Ratna Jatnika Mustofa Haffas Hendriati Agustian

Belajar Statistika dengan UNPAD SAS EDISI KEDUA

Belajar Statistika dengan UNPAD SAS EDISI KEDUA

Belajar Statistika dengan UNPAD SAS

EDISI KEDUA

Ratna Jatnika, Dr. M.T. Mustofa Haffas, S.H. M.Kom. Hendriati Agustiani, Prof. Dr. M.Si.

Copyright @2019 Ratna Jatnika, Mustofa Haffas, Hendriati Agustiani

Hak cipta dilindungi oleh undang-undang. Dilarang mengutip atau meperbanyak sebagian atau seluruh isi buku tanpa izin tertulis dari Penerbit.

Cetakan 1, Januari 2019 Diterbitkan oleh Unpad Press Grha Kandaga, Perpustakaan Unpad Lt 1 Jl. Raya Bandung Sumedang Km 21 Bandung 45363 e-mail : press@unpad.ac.id /pressunpad@gmail.com Tlp. 022-84288806 psw 3806 http://press.unpad.ac.id Anggota IKAPI dan APPTI

> Editor Ahli : Sudartianto, Erna Maulina Tata Letak : Abdi Abdallah Perancang Sampul : Arijie Balqiis

Perpustakaan Nasional : Katalog Dalam Terbitan (KDT)

Ratna Jatnika, Mustofa Haffas, Hendriati Agustiani Belajar Statistika dengan UNPAD SAS – Edisi Kedua/ Editor: Sudartianto, Erna Maulina; Penyunting: Abdi Abdallah, --Cet. 1 – Bandung; Unpad Press; 2019 xiv, 246 h.; 25 cm

ISBN 978-602-439-467-7

I. Judul II. Ratna Jatnika, Mustofa Haffas, Hendriati Agustiani

Memahami suatu teori belum sempurna sebelum kita menerapkannya. Melalui penerapannya, gagasan-gagasan dan logika-logika dalam suatu teori akan dapat dipahami secara baik dan akan menumbuhkan kemauan untuk berfikir kreatif.

Kata Pengantar Edisi Pertama

Unpad SAS (Seri Analisis Statistik) adalah software yang dikembangkan oleh tim peneliti dari Unpad dengan tujuan untuk pengolahan data statistik yang banyak digunakan dalam penelitian bidang Psikologi dan ilmu Sosial lainnya, akan tetapi belum tersedia dalam software-software pengolahan data statistik yang ada, seperti SPSS, SAS, dan lain-lain.

Unpad SAS diharapkan akan menjadi perangkat lunak analisis data Statistik yang murah, cepat, akurat, dan komprehensif bagi pengajaran mata kuliah Statistika. Software ini juga akan mengurangi ketergantungan terhadap perangkat lunak yang dikembangkan pihak asing dan mengurangi maraknya pembajakan terhadap perangkat lunak analisis Statistik.

Buku ajar yang dilengkapi software Unpad SAS ini akan memudahkan mahasiswa untuk belajar Statistika karena dilengkapi dengan contoh perhitungan secara manual dan juga cara menggunakan Unpad SAS dengan petunjuk yang jelas dan sederhana. Sebagai akibatnya mahasiswa akan tertarik untuk belajar Statistika karena pembelajaran Statistika menggunakan Unpad SAS dapat dilakukan secara mudah, murah, cepat, dan akurat.

Buku ini merupakan Edisi Pertama dari rangkaian hasil penelitian yang sedang kami lakukan. Oleh karena itu buku ini baru memuat tiga Bab, yaitu Petunjuk Instalasi Unpad SAS, Manajemen Basisdata, dan Statistik Deskriptif. Namun demikian, software Unpad SAS yang melengkapi buku ini telah memuat beberapa analisis lain yang belum didokumentasikan karena masih dalam tahap pengembangan.

Masukan dari pengguna sangat diharapkan untuk menyempurnakan pengembangan Unpad SAS sebagai suatu media pembelajaran Statistika.

Semoga buku ajar dan software Unpad SAS akan menambah perbendaharaan buku ajar dalam bidang Statistika yang dapat diaplikasikan seluas-luasnya bagi perkembangan ilmu pengetahuan di Indonesia.

Bandung, Januari 2018

Para penulis

Kata Pengantar Edisi Kedua

Buku ini merupakan Edisi Kedua dari rangkaian hasil penelitian yang sedang kami lakukan. Buku ini memuat enam Bab, yaitu Manajemen Basisdata, Statistik Deskriptif, Sampling, Uji Nonparametrik, Uji Korelasi, dan Petunjuk Instalasi Unpad SAS.

Berbeda dengan Edisi Pertama, di dalam Edisi Kedua ini Petunjuk Instalasi Unpad SAS ditempatkan sebagai bab terakhir dengan pertimbangan bahwa buku ini merupakan buku ajar sehingga pembahasan akan langsung ke materi pembelajaran Statistika.

Software Unpad SAS yang digunakan sebagai acuan di dalam buku ini adalah Unpad SAS Rilis 2, yang selain menambahkan modul-modul analisis baru (sampling, uji nonparametrik, dan uji korelasi) juga menambahkan fitur-fitur baru untuk pengolahan basis data, yaitu seperti impor/ekspor tabel data, pencetakan tabel data dan luaran, serta mendukung format masukan/luaran angka dengan pemisah simbol koma atau titik untuk nilai pecahan.

Modul-modul analisis yang telah disediakan di dalam Unpad SAS tentu masih belum lengkap. Dukungan penelitian dan pengembangan dari Universitas Padjadjaran masih diperlukan agar modul-modul analisis lainnya dapat dikembangkan dan dapat menjadikan Unpad SAS sebagai software alternatif untuk keperluan pengolahan data statistik.

Semoga buku ajar dan software Unpad SAS akan menambah perbendaharaan buku ajar dalam bidang Statistika yang dapat diaplikasikan seluas-luasnya bagi perkembangan ilmu pengetahuan di Indonesia.

Bandung, Januari 2019

Para penulis

Daftar Isi

Kata Pengantar Edisi Pertama	vii
Kata Pengantar Edisi Kedua	viii
Daftar Isi	ix
Daftar Gambar	xii
1 Manajemen Basisdata	1
A. Pendahuluan	1
1. Memulai Unpad SAS	1
2. Membuka dan Menutup Tabel	2
3. Menyimpan Tabel	6
4. Keluar dari Unpad SAS	7
B. Menetapkan Struktur dan Memasukkan Data	7
1. Skala Pengukuran	7
2. Jenis Data	9
3. Menetapkan Struktur Data	
4. Memasukkan Data	19
C. Bekerja Dengan Data	20
1. Mengatur Urutan Data	21
2. Pemilihan Kasus	22
3. Mengidentifikasi Data Duplikat	25
4. Menghitung Variabel	
D. Mengimpor dan Mengekspor Tabel	
1. File Teks Tab delimited	
2. File skrip SQL	
3. Mengimpor Tabel	
4. Mengekspor Tabel	
E. Latihan	37
2 Statistik Deskriptif	39
A. Pendahuluan	39
B. Frequencies	39
1. Ukuran gejala pusat	43
2. Ukuran Letak atau Posisi	
3. Ukuran Dispersi	53

4. Ukuran Distribusi	59
5. Diagram	65
C. Descriptives	70
D. Explore	77
E. Crosstabs	80
F. Latihan	83
3 Sampling	87
A. Pendahuluan	87
B. Sampling Acak Sederhana (Simple Random Sampling)	88
1. Penghitungan Ukuran Sampel Minimal untuk Estimasi Rata-Ra	ita
pada Sampling Acak Sederhana	90
2. Penghitungan Ukuran Sampel Minimal untuk Estimasi Propors	si
pada Sampling Acak Sederhana	92
3. Penghitungan Ukuran Sampel Minimal untuk Estimasi Korelas	i dan
Regresi pada Sampling Acak Sederhana	94
B. Sampling Stratifikasi (Stratified Sampling)	96
1. Penghitungan Ukuran Sampel Minimal untuk Estimasi Rata-Ra	ita
pada Sampling Stratifikasi	97
2. Penghitungan Ukuran Sampel Minimal untuk Estimasi Propors	si
pada Sampling Stratifikasi	100
C. Sampling Klaster (Cluster Sampling)	105
D. Sampling Sistematik (Systematic Sampling)	108
E. Random Generator	111
4 Uji Nonparametrik	113
4 Uji Nonparametrik A. Uji Chi-Square untuk Satu Sampel	113 113
4 Uji Nonparametrik A. Uji Chi-Square untuk Satu Sampel B. Uji Runtun untuk Satu Sampel	113 113 117
4 Uji Nonparametrik A. Uji Chi-Square untuk Satu Sampel B. Uji Runtun untuk Satu Sampel C. 2-Independent Samples	113 113 117 119
4 Uji Nonparametrik A. Uji Chi-Square untuk Satu Sampel B. Uji Runtun untuk Satu Sampel C. 2-Independent Samples 1. Uji Mann Whitney	113 113 117 119 119
4 Uji Nonparametrik A. Uji Chi-Square untuk Satu Sampel B. Uji Runtun untuk Satu Sampel C. 2-Independent Samples 1. Uji Mann Whitney 2. Uji Chi-square	113 113 117 119 119 123
 4 Uji Nonparametrik A. Uji Chi-Square untuk Satu Sampel B. Uji Runtun untuk Satu Sampel C. 2-Independent Samples 1. Uji Mann Whitney 2. Uji Chi-square D. K-Independent Samples 	113 113 117 119 119 123 127
 4 Uji Nonparametrik A. Uji Chi-Square untuk Satu Sampel B. Uji Runtun untuk Satu Sampel C. 2-Independent Samples 1. Uji Mann Whitney 2. Uji Chi-square D. K-Independent Samples 1. Uji Kruskal Wallis H 	113 113 117 119 119 123 127 127
 4 Uji Nonparametrik A. Uji Chi-Square untuk Satu Sampel B. Uji Runtun untuk Satu Sampel C. 2-Independent Samples 1. Uji Mann Whitney 2. Uji Chi-square D. K-Independent Samples 1. Uji Kruskal Wallis H E. 2-Related Samples 	113 113 117 119 119 123 127 127 131
 4 Uji Nonparametrik A. Uji Chi-Square untuk Satu Sampel B. Uji Runtun untuk Satu Sampel C. 2-Independent Samples 1. Uji Mann Whitney 2. Uji Chi-square D. K-Independent Samples 1. Uji Kruskal Wallis H E. 2-Related Samples 1. Uji Wilcoxon 	113 113 117 119 119 123 127 127 121 131
 4 Uji Nonparametrik A. Uji Chi-Square untuk Satu Sampel B. Uji Runtun untuk Satu Sampel C. 2-Independent Samples 1. Uji Mann Whitney 2. Uji Chi-square D. K-Independent Samples 1. Uji Kruskal Wallis H E. 2-Related Samples 1. Uji Wilcoxon 2. Uji McNemar 	113 113 117 119 123 123 127 131 131 135

1. Uji Friedman	
2. Uji Q Cochran	
5 Uji Korelasi	
A. Uji Jaspen's M	
B. Uji Eta	
C. Uji Theta	
D. Analisis Korelasi Cramer, Tsuprow, dan Pearson	
E. Analisis korelasi Spearman	
F. Uji Gamma	
G. Latihan	
6 Petunjuk Instalasi	
A. Kebutuhan Sistem Dan Notasi Penulisan	
B. Menginstal Program	
1. Struktur Direktori	
2. Jendela Pembuka	
3. Menginstal dan Mengkonfigurasi MySQL Server	
4. Menginstal MySQL Connector	
5. Menginstal Unpad SAS	
6. Menginstal Acrobat Reader	
7. Menampilkan Petunjuk Instalasi	
8. Dukungan Teknis	
C. Menggunakan Aplikasi	
1. Menyiapkan Database	
2. Mengkonfigurasi ODBC	
3. Menjalankan Unpad SAS	
4. Meng-import tabel-tabel contoh	
Daftar Pustaka	
Indeks	
Lampiran	
Lampiran I: Tabel Distribusi Normal	
Lampiran II: Tabel Distribusi F	
Lampiran III: Distribusi R	
Lampiran IV: Distribusi Chi-Square	

Daftar Gambar

Gambar 1.1: Jendela Utama Unpad SAS	2
Gambar 1.2: Jendela Data View	4
Gambar 1.3: Jendela Variable View	5
Gambar 1.4: Kotak Dialog Save As	6
Gambar 1.5: Jendela Variable View	15
Gambar 2.1: Grafik Kemiringan	59
Gambar 2.2: Grafik Kurtosis	
Gambar 2.3: Contoh Diagram Batang	65
Gambar 2.4: Contoh Pi Chart (Diagram Lingkaran)	
Gambar 2.5: Contoh Histogram	
Gambar 2.6: Kotak Dialog Frequencies-Chart	
Gambar 2.7: Distribusi Skor Numerical Test dan verbal Test	74
Gambar 3.1: Proses Sampling Acak Sederhana	
Gambar-3.2: Proses Sampling Stratifikasi	
Gambar 3.3: Proses Sampling Klaster Satu Tahap	
Gambar 3.4: Proses Sampling Klaster Dua Tahap	
Gambar 3.5: Proses Sampling Sistematik	
Gambar 6.1: Jendela Pembuka	
Gambar 6.2: Jendela Pembuka MySQL Server 5.5 Setup	
Gambar 6.3: Persetujuan Lisensi Pengguna Akhir	178
Gambar 6.4: Memilih Tipe Setup	179
Gambar 6.5: Siap untuk Menginstal MySQL Server	179
Gambar 6.6: Proses Instalasi MySQL	
Gambar 6.7: MySQL Enterprise	
Gambar 6.8: MySQL Enterprise	
Gambar 6.9: Instalasi MySQL Server Komplit	
Gambar 6.10: Jendela Pembuka Konfigurasi MySQL Server Instance	
Gambar 6.11: Jendela 2 Konfigurasi MySQL Server Instance	
Gambar 6.12: Jendela 3 Konfigurasi MySQL Server Instance	
Gambar 6.13: Jendela 4 Konfigurasi MySQL Server Instance	
Gambar 6.14: Jendela 5 Konfigurasi MySQL Server Instance	
Gambar 6.15: Jendela 6 Konfigurasi MySQL Server Instance	
Gambar 6.16: Jendela Task Manager	
Gambar 6.17: Jendela Command Prompt	
Gambar 6.18: Perintah Menginstal MySQL Connector	
Gambar 6.19: Jendela Pembuka MySQL Connector/ODBC Setup	
Gambar 6.20: Persetujuan Lisensi	

Gambar 6.21: Jendela 3 MySQL Connector/ODBC Setup	193
Gambar 6.22: Jendela 4 MySQL Connector/ODBC Setup	194
Gambar 6.23: Proses instalasi MySQL Connector/ODBC Setup	194
Gambar 6.24: Jendela 6 MySQL Connector/ODBC Setup	195
Gambar 6.25: Perintah Menginstal UNPAD SAS	195
Gambar 6.26: Jendela Pembuka Instalasi Unpad SAS	196
Gambar 6.27: Persetujuan Lisensi	196
Gambar 6.28: Informasi Pengguna	197
Gambar 6.29: Memilih Tipe Setup	197
Gambar 6.30: Instalasi Unpad SAS Siap Dilakukan	198
Gambar 6.31: Instalasi Unpad SAS Sedang Dilakukan	198
Gambar 6.32: Instalasi Unpad SAS Selesai	199
Gambar 6.33: Perintah Menginstal Acrobat Reader	199
Gambar 6.34: Perintah Menampilkan Petunjuk Instalasi	200
Gambar 6.35: Perintah Menampilkan Nomor Telpon Dukungan Tekni	i s200
Gambar 6.36: Jendela Run	201
Gambar 6.37: Jendela Run	202
Gambar 6.38: Jendela Run	202
Gambar 6.39: ODBC Data Source Administrator	203
Gambar 6.40: Create New Data Source	203
Gambar 6.41: MySQL Connector/ODBC Data Source Configuration	204
Gambar 6.42: Jendela Pembuka Unpad SAS	205
Gambar 6.43: Jendela Utama Unpad SAS	205
Gambar 6.44: Menu File UNPAD SAS	206
Gambar 6.45: Kotak Dialog Import Table	206
Gambar 6.46: Jendela Import Table	207

1 Manajemen Basisdata

A. PENDAHULUAN

Unpad SAS merupakan software untuk keperluan analisis data statistik. Pengembangan Unpad SAS dilakukan secara modular dan bertahap, sesuai dengan kebutuhan pokok materi pembelajaran pada mata kuliah Statistika di Fakultas Psikologi Unpad, sehingga itu merupakan kumpulan modul analisis statistik. Itulah kenapa penulis menamakannya SAS (Seri Analisis Statistik).

Modul inti dari Unpad SAS adalah Manajemen Basisdata yang dikemas dalam satu paket dengan Manajemen Modul. Modul Manajemen Basisdata digunakan untuk mengelola data/tabel yang akan diolah dan Manajemen Modul digunakan untuk mengintegrasikan modul-modul analisis ke dalam Unpad SAS sehingga modul-modul analisis tersebut dapat menggunakan data/tabel yang telah ada dan hasil analisisnya dapat dikelola oleh modul inti.

Unpad SAS dikembangkan secara modul-terbuka sehingga siapa pun boleh berpartisipasi di dalam pengembangan program aplikasi ini.

1. Memulai Unpad SAS

Gambar 1.1 adalah tampilan yang muncul jika Anda menjalankan program Unpad SAS.

- Menu-bar memuat daftar menu perintah yang dapat diberikan kepada Unpad SAS, yaitu menu File, Edit, View, Data, Analyze, dan Help. Klik nama menu tertentu untuk menampilkan daftar submenu dan atau perintah yang terdapat di dalamnya, klik nama submenu untuk menampilkan daftar perintah yang terdapat di dalamnya, dan klik nama perintah yang akan Anda berikan kepada Unpad SAS.
- Tool bar memuat beberapa tombol yang mewakili perintah tertentu untuk mempercepat pemberian perintah tersebut. Bawalah *pointer* ke tombol

tertentu maka Anda akan melihat teks petunjuk perintah tersebut. Klik tombol tertentu untuk memberikan perintah yang sesuai kepada Unpad SAS.

VINPAD SAS	- • ×
Eile Edit View Data Iransform Analyze Hel	
TOOL-BAR MENU-BAR	
BIDANG KERJA	
STATUS-BAR	
*	

Gambar 1.1: Jendela Utama Unpad SAS

- *Status-bar* memuat status atau keterangan dari proses yang sedang dijalankan oleh Unpad SAS.
- *Bidang-kerja* menampilkan variabel, data, atau keluaran dari file data yang sedang dibuka.

Sebelum penulis membahas tentang perintah-perintah yang berkaitan dengan manajemen basisdata secara terinci, berikut ini penulis akan membahas terlebih dahulu tentang bagaimana cara membuka dan menutup file data serta mengakhiri penggunaan Unpad SAS.

2. Membuka dan Menutup Tabel

Lakukan langkah-langkah berikut untuk membuka file/tabel yang telah ada.

• Klik menu **File**, pilih submenu **Open**, dan pilih perintah **Data** ..., seperti ditunjukkan pada gambar di bawah ini.

- Untuk menyederhanakan penulisan, pemberian perintah seperti itu akan dituliskan dalam bentuk rangkaian nama menu, submenu, dan perintah yang dimaksud dengan pemisah berupa simbol "->". Sebagai contoh, untuk memberikan perintah di atas akan dituliskan menjadi File->Open.
- Atas perintah tersebut maka akan ditampilkan kotak dialog **Select Table**, yaitu seperti ditunjukkan pada gambar di bawah ini.

Select Table			
Open Delete Cancel			
Tables_in_sas			
cor_sample			

- Klik nama tabel yang akan dibuka, dalam hal ini adalah "cor_sample", kemudian klik tombol < Open>.
- Selain dapat digunakan untuk membuka tabel data, kotak dialog ini juga dapat digunakan untuk menghapus tabel data yang ada di dalam daftar.
- Klik nama tabel yang akan dihapus kemudian klik tombol **Delete**.

Atas perintah **Open** tersebut maka pada bidang-kerja Anda akan melihat tampilan seperti ditunjukkan di dalam Gambar 1.2. Berdasarkan tampilan tersebut dapat disampaikan bahwa:

 Tabel "cor_sample" terdiri dari 5 (lima) buah variabel, yaitu Sex, Permisiveness, TypeOfLawyer, IncomeLevel, dan EducationLevel. • **ID** walaupun merupakan variabel tidak diperhitungkan sebagai variabel data karena itu hanya digunakan sebagai nomor urut data. Walaupun begitu, variabel ID harus selalu ada di dalam setiap tabel data Unpad SAS.

ID	Sex	Permissiveness	TypeOfLawyer	IncomeLevel	EducationLeve
1	1	0	3	27	1
2	1	0	3	28	1
3	1	0	2	40	1
4	1	0	3	35	1
5	1	0	1	19	1
6	1	0	2	42	1
7	1	0	2	35	1
8	1	0	3	39	1
9	1	0	1	37	1
10	1	0	2	41	2
11	1	0	1	41	2
12	1	0	3	47	2
13	2	0	3	33	2
14	2	0	2	62	2
15	2	0	2	28	2
16	2	0	3	58	2
17	2	0	1	26	2
18	2	0	2	41	2
19	2	0	2	22	3
20	2	0	2	33	3
21	2	0	1	27	3
22	2	0	2	29	3
23	2	0	2	26	3

Data View Variable View

Gambar 1.2: Jendela Data View

- Perhatikan bagian bawah dari bidang-kerja, di sana ada tulisan "Data View" dan "Variable View". Itu berarti bahwa bidang-kerja dapat digunakan sebagai "Data View" atau "Variable View".
- Bidang "Data View" digunakan untuk menampilkan, menambah, memperbaiki, dan menghapus data dari dan ke dalam tabel, sementara bidang "Variable View" digunakan untuk menampilkan, menambah, memperbaiki, dan menghapus variabel dari dan ke dalam tabel.

Sekarang cobalah Anda pilih/klik *"Variable View"*. Atas perintah tersebut maka tampilan bidang kerja akan berubah menjadi seperti ditunjukkan di dalam Gambar 1.3.

Berdasarkan tampilan tersebut dapat disampaikan bahwa:

• Variabel ID berjenis-data numerik dengan lebar 8 digit,

- Variabel *Sex* berjenis-data numerik dengan lebar 1 digit, dengan nama label "Sex", merupakan data nominal dengan 1=Perempuan dan 2=Laki-laki, lebar kolom di layar adalah 3, dicetak tengah-tengah *(center)*.
- Variabel *Permisiveness* berjenis-data numerik dengan lebar 8 digit, dengan nama label "Permisiveness", merupakan data ordinal dengan 0=Sangat rendah, 1=Rendah, 2=Cukup rendah, 3=Cukup tinggi, 4=Tinggi, dan 5=Sangat tinggi, lebar kolom di layar adalah 12, dicetak rata-kanan (*Right*).

	Name	Туре	Width	Dec	Label	Values	12	Columns	Align	Measure
1	ID	Numeric	8	0	Case ID	{}	5	4	/■ Right	& Nominal
2	Sex	Numeric	1	0	Sex	{1="Perempuan}	5	3	壹 Center	🚴 Nominal
3	Permissiveness	Numeric	8	0	Permissiveness	{0="Sangat re}	\subseteq	12	/■ Right	📶 Ordinal
4	TypeOfLawyer	Numeric	8	0	Type of Lawyer	{1="Konsultan}	C	12	/Ⅲ Right	🚴 Nominal
5	IncomeLevel	Numeric	8	0	Income Level	{}	\subset	12	/≡ Right	Scale 🖉
6	EducationLevel	Numeric	8	0	Education Level	{}	\leq	12	/≡ Right	🔗 Scale
							<))		
							\leq	,		
							\subset	<u></u>		
							\subset			
							0	2		
							2)		
							5)		
							5	<u>,</u>		
							\subseteq	\$		
							C	(
							\leq	,		
							C)		
							2)		
							2)		
							2)		
							5)		
							\subset			
							\leq	,		
							~	2		
							2)		
							5	>		
Data Vie	w Variable View						5	>		
		-0.7			0 1 4	0	~			

Gambar 1.3: Jendela Variable View

- Variabel *TypeOfLawyer* berjenis-data numerik dengan lebar 8 digit, dengan nama label "Type of Lawyer", merupakan data nominal dengan 1=Konsultan, 2=Notaris, dan 3=Pengacara, lebar kolom di layar adalah 12, dicetak rata-kanan (*Right*).
- Variabel *IncomeLevel* berjenis-data numerik dengan lebar 8 digit, dengan nama label "Income Level", merupakan data *Interval/Scale*, lebar kolom di layar adalah 12, dicetak rata-kanan (*Right*).
- Variabel *EducationLevel* berjenis-data numerik dengan lebar 8 digit, dengan nama label "Education Level", merupakan data *Interval/Scale*, lebar kolom di layar adalah 12, dicetak rata-kanan (*Right*).

Jika Anda telah selesai bekerja dengan suatu tabel maka biasakan untuk menutup tabel tersebut. Lakukan langkah berikut untuk keperluan tersebut.

• Klik menu **File** dan pilih perintah **Close**, seperti ditunjukkan pada gambar di bawah ini.

<u>F</u> ile	Edit	View	Data	1
ļ	New			-
-	<u>O</u> pen			
1	<u>C</u> lose			DfL
2	Save			_
	S <u>a</u> ve A	s	-	-

3. Menyimpan Tabel

Ketika Anda membuat tabel baru atau membuka tabel yang sudah ada sebelumnya kemudian melakukan penambahan, pembaruan, atau penghapusan terhadap data tabel tersebut, maka perubahan-perubahan tersebut akan direkam secara otomatis. Tabel baru secara otomatis diberi nama *"new"* dan namanya akan diminta untuk diganti ketika Anda memberi perintah **File->Save**.

Jika Anda bermaksud untuk merekam tabel yang sedang dibuka dengan nama lain maka Anda dapat memberi perintah **File->Save As**. Hal ini biasanya Anda perlukan untuk membuat salinan suatu tabel atau membuat tabel sementara yang datanya akan Anda ubah sesuai dengan kebutuhan tertentu.

Jika Anda memberikan perintah **File->Save** atau **File->Save As** maka Anda akan melihat kotak dialog berikut ini.

ave As		L
New name:	1	
	Cancel	Save

Gambar 1.4: Kotak Dialog Save As

Tuliskan nama tabel pada ruas yang tersedia dan klik tombol <Save> untuk merekamnya atau tombol <Cancel> untuk membatalkannya.

Penting untuk Anda catat bahwa nama suatu tabel hanya dapat berupa kumpulan huruf, angka, dan garis-bawah. Huruf pertama suatu tabel harus berupa huruf atau garis-bawah.

4. Keluar dari Unpad SAS

Setelah Anda menggunakan Unpad SAS dan Anda ingin mengakhirinya, maka Anda dapat memberi perintah **File->Exit**.

B. MENETAPKAN STRUKTUR DAN MEMASUKKAN DATA

Sebelum membahas tentang bagaimana menetapkan struktur dan memasukkan data, penulis memandang perlu untuk membahas tentang skala pengukuran dan jenis data terlebih dahulu.

1. Skala Pengukuran

Pengukuran merupakan aturan-aturan pemberian angka untuk berbagai objek sedemikian rupa sehingga angka ini mewakili kualitas atribut. Terdapat empat jenis skala yang dapat digunakan untuk mengukur atribut, yaitu skala nominal, skala ordinal, skala interval, dan skala ratio.

a. Skala nominal

Merupakan salah satu jenis pengukuran dimana angka dikenakan untuk objek atau kelas objek untuk tujuan identifikasi. Nomor jaminan sosial seseorang, nomor punggung pemain sepakbola, nomor loker, dan lain-lain adalah suatu skala nominal. Demikian juga, jika dalam suatu penelitian tertentu laki-laki diberikan kode 1 dan perempuan mendapat kode 2, untuk mengetahui jenis kelamin seseorang adalah melihat apakah orang ini berkode 1 atau 2. Angka-angka tersebut tidak mewakili hal lain kecuali jenis kelamin seseorang. Perempuan, meskipun mendapat angka yang lebih tinggi, tidak berarti perempuan "lebih baik" dibanding laki-laki, atau "lebih banyak" dari laki-laki. Kita boleh saja membalik prosedur pemberian kode sehingga perempuan berkode 1 dan laki-laki berkode 2.

b. Skala ordinal

Merupakan salah satu jenis pengukuran dimana angka dikenakan terhadap data berdasarkan urutan dari objek. Disini angka 2 lebih besar dari 1 dan angka 3 lebih besar dari 2 maupun 1. Angka 1, 2, 3, adalah berurut, dan semakin besar angkanya semakin besar propertinya. Contoh, angka 1 untuk mewakili mahasiswa tahun pertama, 2 untuk tahun kedua, 3 untuk tahun ketiga, dan 4 untuk mahasiswa senior. Namun kita juga bisa memakai angka 10 untuk mewakili mahasiswa tahun pertama, 20 untuk tahun kedua, 25 untuk tahun ketiga, dan 30 untuk mahasiswa senior. Cara kedua ini tetap mengindikasikan level kelas masing-masing mahasiswa dan *relative standing* dari dua orang, yaitu siapa yang terlebih dahulu kuliah.

c. Skala interval

Merupakan salah satu jenis pengukuran dimana angka-angka yang dikenakan memungkinkan kita untuk membandingkan ukuran dari selisih antara angka-angka. Selisih antara 1 dan 2 setara dengan selisih antara 2 dan 3, selisih antara 2 dan 4 dua kali lebih besar dari selisih antara 1 dan 2. Contohnya adalah skala temperatur, misalnya temperatur yang rendah pada suatu hari adalah 40° F dan temperatur yang tinggi adalah 80° F. Disini kita tidak dapat mengatakan bahwa temperatur yang tinggi dua kali lebih panas dibandingkan temperatur yang rendah karena jika skala *Fahrenheit* menjadi skala *Celsius*, dimana C=(5F–160)/9, sehingga temperatur yang rendah adalah 4.4° C dan temperatur yang tinggi adalah 266° C.

d. Skala ratio

Merupakan salah satu jenis pengukuran yang memiliki nol alamiah atau nol *absolute*, sehingga memungkinkan kita membandingkan *magnitude* angka-angka *absolute*. Tinggi dan berat adalah dua contoh nyata disini. Seseorang yang memiliki berat 100 kg boleh dikatakan dua kali lebih berat dibandingkan seseorang yang memiliki berat 50 kg, dan seseorang yang memiliki berat 150 kg tiga kali lebih berat dibandingkan seseorang yang beratnya 50 kg. Dalam skala ratio, nol memiliki makna empiris *absolute*.

2. Jenis Data

Secara umum, data yang akan diolah dibedakan menurut jenisnya, yaitu:

- Numeric, yaitu suatu nilai berupa bilangan bulat atau pecahan;
- Date, yaitu suatu nilai berupa tanggal dan waktu; dan
- *String*, yaitu suatu nilai berupa kumpulan karakter.

Rentang nilai yang dapat ditetapkan untuk data numerik ditentukan oleh jumlah/lebar angka (*width*) untuk data tersebut. Jenis data *numeric* berupa bilangan bulat dan pecahan dibedakan oleh jumlah digit desimal (*dec*) yang ditetapkan untuk data tersebut. Jika itu bernilai 0 maka itu diartikan sebagai bilangan bulat sementara jika itu bukan 0 maka itu diartikan sebagai bilangan pecahan.

Data numerik dengan lebar 5 digit dan desimal 0 dipandang sebagai bilangan bulat dengan rentang nilai dari -9999 sampai dengan 99999. Data numerik dengan lebar 5 digit dan desimal 2 dipandang sebagai bilangan pecahan dengan rentang nilai dari -9,99 sampai dengan 99,99.

Jenis-data *Date* digunakan untuk menyimpan nilai berupa tanggal dan waktu dalam format

YYYY-MM-DD hh:mm:ss

Dimana:

YYYY	adalah tahun
MM	adalah nomor bulan, 01 sampai dengan 12
DD	adalah tanggal, 01 sampai dengan 31
hh	adalah jam, 00 sampai dengan 23
mm	adalah menit, 00 sampai dengan 59
SS	adalah detik, 00 sampai dengan 59

Rentang nilai yang dapat diberikan untuk jenis data *Date* adalah "1000-01-01 00:00:00" sampai dengan "9999-12-31 23:59:59".

Jenis-data String digunakan untuk menyimpan nilai berupa kumpulan karakter. Jumlah karakter yang dapat ditetapkan (dianjurkan) 1 sampai dengan 255 karakter.

BELAJAR STATISTIKA DENGAN UNPAD SAS

Didalam pengolahan data statistika dengan menggunakan bantuan komputer, penetapan jenis-data harus mengacu kepada skala pengukuran. Jenis-data *String*, walaupun dapat digunakan untuk nilai berskala pengukuran nominal atau ordinal tetapi sebaiknya dihindarkan. Misalnya, penggunaan literal "perempuan" dan "laki-laki" atau "P" dan "L" untuk variabel jenis kelamin sebaiknya dihindarkan dan digantikan dengan angka "1" dan "2" dengan penjelasan 1=perempuan dan 2=laki-laki. Apa lagi jika itu digunakan untuk nilai berskala pengukuran ordinal. Misalnya, penggunaan literal "SD", "SMP", "SMA", dan "Perguruan Tinggi" sebaiknya dihindarkan dan digantikan dengan angka "1", "2", "3", dan "4" dengan penjelasan 1=SD, 2=SMP, 3=SMA, dan 4=Perguruan Tinggi.

Penggunaan nilai secara literal, selain tidak sederhana, menyulitkan, atau lambat ketika dimasukkan. Misalnya, menuliskan nilai "1" dan "2" lebih sederhana, mudah, atau cepat dibandingkan dengan menuliskan "perempuan" dan "laki-laki". Selain itu, penulisan nilai secara literal tidak dapat mencerminkan tingkatan dari nilai tersebut. Misalnya, nilai literal "SD", "SMP", "SMA", dan "Perguruan Tinggi" kalau diurut secara alfabetis hasilnya adalah "Perguruan Tinggi", "SD", "SMA", dan "SMP". Urutan tersebut tentu menjadi tidak sesuai dengan skala pengukuran ordinal yang boleh jadi kita maksudkan. Oleh sebab itu, penggunaan nilai "1", "2", "3", dan "4" dengan penjelasan bahwa 1=SD, 2=SMP, 3=SMA, dan 4=Perguruan Tinggi, selain lebih sederhana, mudah, atau cepat juga dapat mencerminkan tingkatan dari nilai tersebut.

3. Menetapkan Struktur Data

Setiap tabel data Unpad SAS terdiri dari satu atau lebih variabel. Setiap variabel memiliki:

- *Name* adalah nama pendek yang diberikan untuk variabel. Nama variabel dimulai oleh huruf dan dapat diikuti oleh huruf, angka, atau garisbawah. Nama variabel sebaiknya dibuat sependek mungkin tetapi tetap dapat mengingatkan pada variabelnya. Contoh, Anda dapat menggunakan nama "JK" untuk variabel Jenis Kelamin atau "JP" untuk variabel Jenis Pekerjaan.
- *Type* adalah jenis-data yang sesuai dengan variabel yang dimaksud, yaitu *Numeric, Date,* atau *String*.

 Width – adalah jumlah/lebar angka untuk jenis-data numerik atau jumlah huruf untuk jenis-data *String*. Untuk jenis-data *Date*, atribut ini diabaikan. Nilai untuk "width" sudah termasuk dengan jumlah angka desimal yang ditetapkan pada kolom "dec", simbol pemisah nilai bulat dan pecahan, simbol pemisah nilai ribuan, serta simbol nilai negatif.

Sebagai misal, untuk tinggi badan dalam satuan cm kita cukup menentukan atribut *width* bernilai 3. Jika tinggi badan tersebut ditetapkan memiliki ketelitian 1 angka desimal maka nilai untuk *width* harus ditambah 2, yaitu 1 untuk angka desimal dan 1 untuk simbol pemisah angka desimal.

- *Dec* adalah jumlah angka di belakang titik desimal. Atribut ini hanya digunakan untuk jenis-data numerik.
- Label adalah nama panjang untuk variabel. Nama ini akan digunakan pada luaran hasil analisis. Contoh, pada kolom "Name" Anda dapat menuliskan "JK" dan pada kolom "Label" Anda dapat menuliskan "Jenis Kelamin".

Label akan digunakan oleh Unpad SAS pada luaran yang dihasilkan.

Walaupun nilai untuk *label* dapat diberikan secara panjang tetapi itu sebaiknya digunakan secara bijaksana agar tidak mengganggu luaran yang dihasilkan.

- Values adalah nilai literal untuk nilai variabel. Ini dapat digunakan untuk data nominal dan ordinal yang disandikan. Misalnya, 1=Laki-laki, 2=Perempuan.
- *Missing* adalah aturan/perlakuan yang diberikan untuk nilai masukan tertentu.
- *Column* adalah lebar bidang tampilan, terutama pada *Data View*, yang ditetapkan untuk variabel.
- *Align* adalah mode pencetakan yang digunakan, yaitu rata-kiri (*Left*), rata-kanan (*Right*), atau simetris (*Center*).
- *Measure* adalah skala pengukuran data, yaitu *Nominal, Ordinal,* atau *Scale* (untuk data *Interval* dan *Ratio*).

Untuk memahami cara menetapkan struktur data atau variabel, perhatikan baik-baik masalah di bawah dan bagaimana itu ditetapkan ke dalam suatu tabel.

Contoh 1.1:

Sebuah penelitian dilakukan untuk mengetahui faktor-faktor yang berpengaruh terhadap perilaku anak mengucapkan terima kasih setelah diberi bantuan oleh orang dewasa. Penelitian dilakukan di Desa Cijengkol, melibatkan 50 anak usia 3, 4, 5, dan 6 tahun.

Selama 1 minggu, semua anak diberikan tayangan lagu anak "Ucapkan Terima Kasih" dengan frekuensi yang berbeda-beda pada setiap anak. Minggu selanjutnya, pada anak diberikan 10 situasi dimana anak menerima bantuan dari orang dewasa. Berapa kali anak mengucapkan terima kasih setelah menerima bantuan tersebut, dicatat.

Selain itu, diukur juga Kondisi Sosial Ekonomi orang-tua yang digolongkan menjadi 3 golongan, yaitu "bawah", "menengah", dan "atas". Kecenderungan Perilaku Prososial Anak yang diukur menggunakan kuesioner yang diberikan kepada orang-tua, berisi 20 *item* dengan 4 pilihan jawaban: 1=ti-dak pernah; 2=kadang-kadang; 3=sering; dan 4=selalu. Pada variabel Jenis Kelamin angka 1 mewakili jenis kelamin "laki-laki", dan angka 2 mewakili jenis kelamin "perempuan".

Nomor Urut Anak	Jenis Kelamin	Usia	Sosial Ekonomi Orangtua	Kecenderungan Perilaku Prososial Anak	Frekuensi Penanyangan Lagu "Ucapkan Terima Kasih" Selama 1 Minggu	Jumlah Ucapan Terima Kasih yang diucapkan anak saat menerima bantuan
1	L	3	Menengah	21	7	4
2	L	4	Atas	78	5	5
3	L	5	Bawah	65	6	3
4	L		Menengah	45	4	4
5	L	3	Atas	34	5	5
6	L	5	Bawah	65	3	6
7	L	5	Bawah	76	4	8
8	L	5	Atas	45	5	9
9	L	6	Menengah	34	6	4
10	L	6	Menengah	23	5	5
11	L	3	Atas	65	4	6
12	L	4	Menengah	45	3	7
13	L	4	Atas	67	4	8
14	L	5	Bawah	54	5	2
15	L	5	Menengah	65	6	4
16	L	6	Atas	34	5	5

Berikut ini adalah hasil data yang diperoleh:

Nomor Urut Anak	Jenis Kelamin	Usia	Sosial Ekonomi Orangtua	Kecenderungan Perilaku Prososial Anak	Frekuensi Penanyangan Lagu "Ucapkan Terima Kasih" Selama 1 Minggu	Jumlah Ucapan Terima Kasih yang diucapkan anak saat menerima bantuan
17	L	3	Bawah	54	4	6
18	L	3	Bawah	65	3	7
19	L	4	Atas	34	4	3
20	L	5	Menengah	23	5	4
21	L	6	Menengah	56	6	2
22	L	3	Atas	76	5	3
23	L	5	Menengah	45	4	1
24	L	5	Atas	67	3	3
25	L	5	Bawah	54	4	4
26	Р	6	Menengah	65	5	5
27	Р	6	Atas	76	6	6
28	Р	3	Bawah	54	5	7
29	Р	4	Bawah	65	4	4
30	Р	4	Atas	45	3	2
31	Р	5	Menengah	65	4	3
32	Р	5	Menengah	45	5	4
33	Ρ	6	Atas	54	6	5
34	Р	3	Atas	65	4	6
35	Р	5	Bawah	65	3	7

Untuk keperluan tersebut lakukan langkah-langkah sebagai berikut.

- Tetapkan *Name* untuk variabel-variabel tersebut. Katakanlah itu secara berturut-turut adalah JK, Usia, SEO, Prososial, FL, dan JU.
- Tetapkan *Type* untuk variabel-variabel tersebut. JK berjenis-data *String*, Usia berjenis-data *Numeric*, SEO berjenis-data *String*, Prososial berjenisdata *Numeric*, FL berjenis-data *Numeric*, dan JU berjenis-data *Numeric*.
- Tetapkan Width untuk variabel-variabel tersebut. JK 1 karakter, Usia 1 angka, SEO 8 huruf, Prososial 2 angka, FL 2 angka, dan JU 2 angka. Nilai Width sekurang-kurangnya sama dengan nilai terbesar/terpanjang dari variabel yang dimaksud. Dalam contoh ini, nilai terpanjang variabel SEO adalah "Menengah", maka nilai Width untuk variabel SEO sekurang-kurangnya adalah 8.
- Tetapkan *Dec* untuk variabel-variabel tersebut. Dalam hal ini semuanya ditetapkan bernilai 0.
- Tetapkan *Label* untuk variabel-variabel tersebut. Label untuk JK adalah "Jenis Kelamin", label untuk Usia adalah "Usia" atau kosong karena sama,

label untuk SEO adalah "Status Sosial Ekonomi Orang-tua", label untuk Prososial adalah "Kecenderungan Perilaku Prososial Anak", label untuk FL adalah "Frekuensi Penanyangan Lagu Ucapkan Terima Kasih Selama 1 Minggu", dan label untuk JU adalah "Jumlah Ucapan Terima Kasih yang diucapkan anak saat menerima bantuan".

- Tetapkan *Values* untuk variabel-variabel tersebut. Untuk JK, L=Laki-laki dan P=Perempuan.
- Tetapkan *Missing* untuk variabel-variabel tersebut. Dalam contoh ini tidak ada.
- Tetapkan *Column* untuk variabel-variabel tersebut. Untuk JK 4, Usia 4, SEO 10, Prososial 10, FL 4, dan JU 4.
- Tetapkan *Align* untuk variabel-variabel tersebut. Untuk JK adalah *Left*, untuk Usia adalah *Right*, untuk SEO adalah *Left*, untuk Prososial adalah *Right*, untuk FL adalah *Right*, dan untuk JU adalah *Right*.
- Tetapkan *Measure* untuk variabel-variabel tersebut. Untuk JK adalah *Nominal*, untuk Usia adalah *Scale*, untuk SEO adalah *Ordinal*, untuk Prososial adalah *Scale*, untuk FL adalah *Scale*, dan untuk JU adalah *Scale*.

Setelah Anda memahami nilai untuk setiap atribut variabel di atas maka selanjutnya adalah memberikan perintah untuk membuat tabel baru dan menetapkan semua variabel dan atributnya ke dalam tabel. Lakukan langkah-langkah berikut untuk keperluan tersebut.

 Berikan perintah File->New. Atas perintah tersebut Anda akan melihat jendela *Variable View* di bidang kerja, yaitu seperti di bawah ini.

MANAJEMEN BASISDATA

	Name	Туре	Width	Dec	Label	Values	Ы	Columns	Align	Measure
1	ID.	Numeric	8	0		{}	У	8	를 Right	🚴 Nominal
							2			
							2			
							2			
							5			
							5			
							5			
							S			
							2			
							2			
							3			
							5			
							S			
							2			
							2			
							S			
							3			
							5			
							5			
							5			
							2			
Data Vie	W Variable View						2			

Gambar 1.5: Jendela Variable View

Berikut ini adalah kegunaan sejumlah tombol *keyboard* di dalam penetapan variabel.

Gunakan tombol panah-kanan untuk memindahkan sel aktif ke kolom berikutnya.

Gunakan tombol panah-kiri untuk memindahkan sel aktif ke kolom sebelumnya.

Gunakan tombol panah-bawah untuk memindahkan sel aktif ke baris berikutnya. Jika posisi sel aktif berada di baris terakhir, itu digunakan untuk menambah variabel baru.

Gunakan tombol panah-atas untuk memindahkan sel aktif ke baris sebelumnya.

Gunakan tombol *Insert* untuk menyisipkan variabel baru sebelum variabel yang berada sel aktif.

Gunakan tombol *Esc/Escape* untuk membatalkan perubahan yang dilakukan terhadap sel aktif.

Gunakan tombol *Ctrl+Del* untuk menghapus variabel yang berada di baris aktif.

Berikutnya, cobalah Anda tambahkan semua variabel di atas, sesuai dengan atributnya masing-masing, sehingga hasilnya adalah seperti ditunjukkan di dalam gambar berikut ini.

1	13205201137763	Туре	Width	Dec	Label	Values		Columns	Align	Measure	
	ID	Numeric	8	0		{}	3	8	/≡ Right	🚴 Nominal	
- 4	JK	String	1	0	Jenis Kelamin	{L="Laki-laki}	5	4	≣ Left	🚴 Nominal	
3	Usia	Numeric	1	0		{}	5	4	/Ⅲ Right	Scale 🖉	
4	SEO	String	8	0	Status Sosial Ekonomi Or	({}	5	10	E Left	📶 Ordinal	
5	i Prososial	Numeric	2	0	Kecenderungan Perilaku	{}	5	10	/≡ Right	🔊 Scale	
E	FL	Numeric	2	0	Frekuensi Penanyangan	{}	5	4	≣ Right	🔗 Scale	
8	IJU	Numeric	2	0	Jumlah Ucapan Terima K	{}	5	4	≣ Right	Scale	
							S				

Untuk keperluan tersebut lakukan langkah-langkah sebagai berikut.

- Pastikan Anda berada pada sel ID (baris pertama kolom Name).
- Tekan tombol panah-bawah untuk memindahkan sel aktif ke baris berikutnya. Tulis "JK" dan tekan tombol <Enter>.
- Tekan tombol panah-kanan untuk memindahkan sel aktif ke kolom *Type*. Atribut *Type* adalah *drop-down list* jadi Anda cukup meng-klik bagian kanan nilai pada kolom tersebut untuk menampilkan daftar pilihan dan memilih nilai yang telah tersedia. Berikut ini adalah contoh menampilkan daftar pilihan untuk kolom *Type*.

-	Name	Туре	W
1	ID	Numeric	
2	JK	String 💌	
3	Usia	Numeric	-
4	SEO	Date	1
5	Prososial	CONTRACT OF	
6	FL	Numeric	
8	JU	Numeric	

- Tekan tombol panah-kanan untuk memindahkan sel aktif ke kolom Width. Tulis "1" dan tekan tombol < Enter>.
- Tekan tombol panah-kanan untuk memindahkan sel aktif ke kolom Dec. Tulis "0" dan tekan tombol <Enter>.
- Tekan tombol panah-kanan untuk memindahkan sel aktif ke kolom Label. Tulis "Jenis Kelamin" dan tekan tombol <Enter>.
- Tekan tombol panah-kanan untuk memindahkan sel aktif ke kolom Values. Atribut Values adalah ellipsis, Anda harus meng-klik bagian kanan nilai pada kolom tersebut untuk menampilkan kotak dialog untuk keperluan penetapan nilai kolom tersebut. Berikut ini adalah contoh menampilkan kotak dialog untuk kolom Values.

1	Label	Values		
5		{}		
5	JenisKelamin	{}		

• Klik simbol ellipsis (...) maka Anda akan melihat kotak dialog berikut.

Value: P	
Label: Pe	erempuan
Add Change Remove	L="Laki-laki"

- Masukkan simbol "L" pada ruas Value dan "Laki-laki" pada ruas Label kemudian klik tombol <Add>.
- Masukkan simbol "P" pada ruas *Value* dan "Perempuan" pada ruas Label kemudian klik tombol <Add>.
- Kemudian klik tombol <OK>.
- Tekan tombol panah-kanan untuk memindahkan sel aktif ke kolom Missing. Atribut Missing adalah ellipsis, Anda harus meng-klik bagian kanan nilai pada kolom tersebut untuk menampilkan kotak dialog untuk

keperluan penetapan nilai kolom tersebut. Berikut ini adalah contoh menampilkan kotak dialog untuk kolom *Missing*.

Values	Missing	Colum	
{}			
{L="Laki-laki}			

• Klik simbol *ellipsis* (...) maka Anda akan melihat kotak dialog berikut.

Missing Values		×
No missing value	\$	
C Discrete missing	values	
C Range plus one	discrete missing values	
Low:	High:	
Discrete value:		
(
	Lancel	Help

- Untuk sementara Anda dapat mengabaikan penetapan Missing Values ini.
- Klik tombol <OK>.
- Tekan tombol panah-kanan untuk memindahkan sel aktif ke kolom Column. Tulis "4" dan tekan tombol <Enter>.
- Tekan tombol panah-kanan untuk memindahkan sel aktif ke kolom *Align*. Atribut *Align* adalah *drop-down list* jadi Anda cukup meng-klik
 bagian kanan nilai pada kolom tersebut untuk menampilkan daftar pilihan dan memilih nilai yang telah tersedia. Berikut ini adalah contoh menampilkan daftar pilihan untuk kolom *Align*.

 Tekan tombol panah-kanan untuk memindahkan sel aktif ke kolom *Measure*. Atribut *Measure* adalah *drop-down list* jadi Anda cukup meng-klik bagian kanan nilai pada kolom tersebut untuk menampilkan daftar pilihan dan memilih nilai yang telah tersedia. Berikut ini adalah contoh menampilkan daftar pilihan untuk kolom *Measure*.

lign	Measure				
Right	🛞 Nominal				
ELeft	Ordinal 💌	,			
	Nominal 🔺				
	Scale -				

- Tekan tombol panah-bawah untuk memindahkan sel aktif ke baris berikutnya.
- Ulangi langkah-langkah di atas untuk menambahkan variabel-variabel lainnya.

ID		JK	Usia	SEO	Prososial	FL	JI	U
	1	L	3	Menengah	21		7	4
	2	L	4	Atas	78	1	5	5
	3	L	5	Bawah	65	1	6	3
	4	L		Menengah	45		4	4
	5	L	3	Atas	34		5	5
	6	L	5	Bawah	65		3	6
i	7	L	5	Bawah	76		4	8
1	8	L	5	Atas	45		5	9
1	9	L	6	Menengah	34		6	4
1	10	L	6	Menengah	23	1	5	5
Ī	11	L	3	Atas	65	1	4	6
Ī	12	L	4	Menengah	45		3	7
	13	L	4	Atas	67		4	8
-	14	L	5	Bawah	54		5	2
1	15	L	5	Menengah	65	1	6	4
1	16	L	6	Atas	34		5	5
-	17	L	3	Bawah	54		4	6
1	18	L	3	Bawah	65		3	7
	19	L	4	Atas	34		4	3
	20	L	5	Menengah	23		5	4
1	21	L	6	Menengah	56		6	2
1	22	L	3	Atas	76		5	3
1	23	L	5	Menengah	45		4	1

4. Memasukkan Data

Untuk memasukkan data ke dalam tabel, pastikan Anda meng-klik *"Data View"*. Gambar di atas menunjukkan tabel sesudah datanya dimasukkan. Jika data untuk tabel tersebut belum dimasukkan, Anda akan melihat tabel tersebut hanya memiliki judul kolom tanpa ada baris-baris nilai di bawahnya.

Berikut ini akan dibahas bagaimana cara memasukkan nilai ke dalam tabel tersebut secara manual dan melalui proses *copy-paste*.

Memasukkan Data Secara Manual

- Klik sel kosong yang tepat berada di bawah kolom ID. Masukkan angka "1" dan tekan tombol <Enter> pada keyboard.
- Tekan tombol panah-kanan untuk memindahkan sel aktif ke kolom JK. Masukkan huruf "L" dan tekan tombol <Enter>.
- Tekan tombol panah-kanan untuk memindahkan sel aktif ke kolom Usia. Masukkan angka "3" dan tekan tombol <Enter>.
- Tekan tombol panah-kanan untuk memindahkan sel aktif ke kolom SEO. Masukkan kata "Menengah" dan tekan tombol <Enter>.
- Tekan tombol panah-kanan untuk memindahkan sel aktif ke kolom Prososial. Masukkan angka "21" dan tekan tombol <Enter>.
- Tekan tombol panah-kanan untuk memindahkan sel aktif ke kolom FL. Masukkan angka "7" dan tekan tombol <Enter>.
- Tekan tombol panah-kanan untuk memindahkan sel aktif ke kolom JU. Masukkan angka "4" dan tekan tombol <Enter>.
- Tekan tombol panah-bawah untuk memindahkan sel aktif ke baris berikutnya.
- Ulangi langkah pertama untuk memasukkan data kedua dan seterusnya.

Memasukkan Data Secara Copy-Paste

Jika Anda telah memiliki data dalam bentuk tabel MS-Word, MS-Excel, atau yang sejenis lainnya, Anda dapat menyalin *(copy)* data tersebut dan menempelkannya *(paste)* ke dalam tabel Unpad SAS yang sedang dibuka.

Untuk keperluan tersebut, pastikan jumlah kolom yang disalin sama dengan tabel Unpad SAS dan nilai-nilainya sesuai dengan jenis-data kolomkolom tabel Unpad SAS.

Apabila sudah selesai, simpanlah tabel tersebut dengan nama "penelitian_1".

C. BEKERJA DENGAN DATA

Pada bagian ini, Anda akan belajar berbagai perintah yang dapat digunakan dalam Unpad SAS untuk mengubah, mentransformasi, dan memperbaiki data yang Anda miliki. Perintah-perintah ini sangat bermanfaat terutama apabila Anda memiliki data yang cukup banyak atau variabel yang cukup banyak untuk setiap subjek.

ſ	6	n
ш		- 1
ш	~	

6		
6		
10	-	_

7	-	
n	6	
•	υ.	

1

T
_

1. Mengatur Urutan Data

Perintah ini digunakan ketika Anda ingin mengatur urutan data berdasarkan variabel atau aturan tertentu. Tabel data yang akan digunakan adalah tabel "penelitian_1". Misalnya terhadap data tersebut kita ingin mengatur urutan data berdasarkan jenis kelamin.

Untuk keperluan tersebut, Anda harus melakukan langkah-langkah sebagai berikut.

- Buka tabel "penelitian_1".
- Pilih perintah Data->Sort Cases ...

• Atas perintah tersebut maka Anda akan melihat kotak dialog **Sort Cases** ditampilkan.

- Pilih variabel yang akan diurutkan. Misalnya JK.
- Klik tombol wuntuk menetapkan variabel yang dipilih ke dalam kotak "Sort by"
- Klik tombol-radio pada bidang *"Sort Order"* untuk menetapkan apakah data akan diurut secara menaik *(ascending)* atau menurun *(descending)*.
- Klik tombol <OK>
Perhatikan bahwa setelah diurutkan, urutan nomor respondennya (ID) berubah, mengikuti jenis kelamin.

	ID	JK	Usia	SEO	Prososial	FL	JU
	1	L	3	Menengah	21	7	4
	15	L	5	Menengah	65	6	4
	16	L	6	Atas	34	5	5
	17	L	3	Bawah	54	4	6
0	18	L	3	Bawah	65	3	7
	19	L	4	Atas	34	4	3
	20	L	5	Menengah	23	5	4
	21	L	6	Menengah	56	6	2
0	22	L	3	Atas	76	5	3
	23	L	5	Menengah	45	4	1
	24	L	5	Atas	67	3	3
	25	L	5	Bawah	54	4	4
	14	L	5	Bawah	54	5	2
	13	L	4	Atas	67	4	8
	2	L	4	Atas	78	5	5
	3	L	5	Bawah	65	6	3
	4	L		Menengah	45	4	4
	5	L	3	Atas	34	5	5
	6	L	5	Bawah	65	3	6
	7	L	5	Bawah	76	4	8
	8	L	5	Atas	45	5	9
1	9	L	6	Menengah	34	6	4
	10	L	6	Menengah	23	5	5

2. Pemilihan Kasus

Untuk memilih kasus tertentu dan melakukan analisis secara terpisah pada kasus yang sudah dipilih tersebut adalah dengan menggunakan perintah *"Select Cases"*.

Contohnya, jika pada data yang telah kita miliki Anda hanya akan mengolah data pada kelompok responden yang skor kecenderungan perilaku prososialnya adalah 40 ke atas (prososial \geq 40), maka langkahlangkahnya adalah sebagai berikut:

Pilih perintah Data->Select Cases

• Kotak dialog *Select Cases* akan ditampilkan.

 [Usia] Frekuensi Penanyang Jenis Kelamin [JK] Jumlah Ucapan Terim Kecenderungan Peril Status Sosial Ekonom 	Select C All cases C All cases C If condition is satisfied If C Random sample of cases Sample C Based on time or case range Range C Use filter variable:
	Output Filter out unselected cases Copy selected cases to a new dataset Dataset name: Delete unselected cases
Status:	
Status:	ste Reset Cancel Help

- Pilih "If condition is satisfied"
- Tekan tombol <If>, sehingga muncul kotak dialog "Select cases: If" sebagai berikut.

BELAJAR STATISTIKA DENGAN UNPAD SAS

	·								,	
	,							Function Group:		
	+	<	>	7	8	9		All Artitmethic	[
		<=	>=	4	5	6		CDF & Noncentral CDF Conversion		
	×	-	!=	1	2	3		Current Date/Time Date Aritmetic		
	1	&	1		0			Date Creation		
	××		0		Delete			Function and Special Varia	ьl	
ABS(nu numexp	mexpr). N r, which	lumeria must b	o. Retur e nume	ns the ric.	absolu	ute value c		Arsin Artan Cos Exp Lg10 Ln Lngamma Mod		
	ABS(nu numexp	ABS(numexpr), M numexpr, which	ABS(numexpr), Numeric numexpr, which must b	ABS(numexpr). Numeric. Returnumexpr, which must be nume	- <= >= 4 * = != 1 / & I () ** ! () ABS(numexpr). Numeric. Returns the numexpr, which must be numeric.	· <=	. <=	- <=	. <=	

- Pilih variabel "Kecenderungan perilaku prososial [prososial]"
- Tekan tombol <Continue> dan klik tombol <OK>

		JK	Usia	SE_Orangtua	Prososial	Frekuensi_Lagu	Jumlah_Ucapan
	4	F	3	Menengah	24	7	4
1	15	L	5	Menengah	65	6	4
0	46	Ł	6	Atas	34	5	5
	17	L	3	Bawah	54	4	6
	18	L	3	Bawah	65	3	7
1	19	F	4	Atas	34	4	3
1	20	Ł	5	Menengah	23	5	4
1	21	L	6	Menengah	56	6	2
1	22	L	3	Atas	76	5	3
1	23	L	5	Menengah	45	4	1
í	24	L	5	Atas	67	3	3
1	25	L	5	Bawah	54	4	4
1	14	L	5	Bawah	54	5	2
1	13	L	4	Atas	67	4	8
ĺ.	2	L	4	Atas	78	5	5
1	3	L	5	Bawah	65	6	3
	4	L		Menengah	45	4	4
	5	F	3	Atas	34	5	5
	6	L	5	Bawah	65	3	6
	7	L	5	Bawah	76	4	8
	8	L	5	Atas	45	5	9
	9	Ł	6	Menengah	34	6	4
	10	4	6	Menengah	23	5	5

• Data yang tidak terpilih akan dicoret dan berwarna merah, seperti gambar di atas.

3. Mengidentifikasi Data Duplikat

Kasus "duplikat" mungkin terjadi di data Anda karena berbagai alasan, termasuk:

- Kesalahan entri data dimana kasus yang sama tidak sengaja masuk lebih dari satu kali.
- Beberapa kasus memiliki nilai kode-primer yang sama namun memiliki nilai kode-sekunder yang berbeda, seperti anggota keluarga yang semuanya tinggal di rumah yang sama.
- Beberapa kasus mewakili kasus yang sama namun dengan nilai yang berbeda untuk variabel selain yang mengidentifikasi kasus tersebut, seperti beberapa pembelian yang dilakukan oleh orang atau perusahaan yang sama untuk produk yang berbeda atau pada waktu yang berbeda.

Identifikasi Kasus Duplikat memungkinkan Anda menentukan kasus duplikat dan memberikan status secara otomatis atas duplikasi kasus duplikat tersebut. Sebagai contoh, perhatikan data pada tabel berikut.

ID	JK	Umur	OlahRaga	AsalDaerah
1	L	13	Renang	DKI Jakarta
2	Р	14	Basket	Jawa Barat
3	Р	12	Basket	Jawa Barat
4	L	13	Renang	DKI Jakarta
5	Ρ	14	Renang	Jawa Barat

 Jika kita ingin mengetahui adanya duplikasi data berdasarkan variabel OlahRaga maka secara manual kita dapat mengurut data tersebut berdasarkan variabel OlahRaga. Hasilnya adalah sebagai berikut.

ID	JK	Umur	OlahRaga	AsalDaerah	Dup
2	Ρ	14	Basket	Jawa Barat	0
3	Ρ	12	Basket	Jawa Barat	0
1	L	13	Renang	DKI Jakarta	0
4	L	13	Renang	DKI Jakarta	0
5	Ρ	14	Renang	Jawa Barat	0

 Variabel *Dup* kita tambahkan untuk menyimpan status duplikasi data. Nilai variabel *Dup* kita tetapkan 0, yang artinya adalah bahwa variabel *OlahRaga* pada baris tersebut memiliki duplikasi dengan baris lainnya. • Jika kita ingin mengetahui adanya duplikasi data berdasarkan variabel *OlahRaga* dan Umur maka secara manual kita dapat mengurut data tersebut berdasarkan variabel *OlahRaga* dan *Umur*. Hasilnya adalah sebagai berikut.

ID	JK	Umur	OlahRaga	AsalDaerah	Dup
3	Ρ	12	Basket	Jawa Barat	1
2	Ρ	14	Basket	Jawa Barat	1
1	L	13	Renang	DKI Jakarta	0
4	L	13	Renang	DKI Jakarta	0
5	Р	14	Renang	Jawa Barat	1

 Pada contoh di atas, nilai variabel *Dup* kita tetapkan 1 untuk menyatakan bahwa variabel *OlahRaga* + *Umur* pada baris tersebut tidak memiliki duplikasi dengan baris lainnya dan kita tetapkan 0 untuk menyatakan bahwa variabel *OlahRaga* + *Umur* pada baris tersebut memiliki duplikasi dengan baris lainnya.

Untuk keperluan mengidentifikasi data duplikat secara otomatis, Unpad SAS menyediakan perintah **Data->Identify Duplicate Cases**. Lakukan langkah-langkah berikut untuk keperluan tersebut.

- Pastikan Anda sedang membuka tabel "penelitian_1".
- Berikan perintah Data->Identify Duplicate Cases. Atas perintah ini Anda akan melihat jendela dialog berikut.

MANAJEMEN BASISDATA

		Define matching cases by:	
[Usia] Frekuensi Penanyangan L. Jenis Kelamin [JK] Jumlah Ucapan Terima Ka Kecenderungan Perilaku F	•	Sort within matching group by:	
		Sort Ascending Descending	
		Number of matching and sorting variab	oles:
Variables to Create		Number of matching and sorting variab	bles:
Variables to Create	=unique	Number of matching and sorting variab or primary, 0=duplicate)	oles:
Variables to Create ✓ Indicator of primary case (1 ← Last case in each grou ← First case in each grou	=unique ıp is prim p is prim	Number of matching and sorting variab or primary, 0=duplicate) ary Name: PrimaryFirst ary	oles:
Variables to Create ✓ Indicator of primary case (1 ← Last case in each grou ← First case in each grou ← First case in each grou ← Filter by indicator value Gequential count of match group (0=nonmatching cas	=unique ip is prim p is prim ing case ;e)	Number of matching and sorting variab or primary, 0=duplicate) lary Name: PrimaryFirst ary : in each Name: MatchSequence	oles:
Variables to Create ✓ Indicator of primary case (1 ← Last case in each grou ← First case in each grou ← First case in each grou ← First case in each grou ← Sequential count of match group (0=nonmatching case ✓ Move matching cases to the	=unique ip is prim p is prim ing case ;e) top of ti	Number of matching and sorting variab or primary, 0=duplicate) ary Name: PrimaryFirst ary : in each Name: MatchSequence ne file	les:
Variables to Create ✓ Indicator of primary case (1 ← Last case in each grou ← First case in each grou ← Filter by indicator value ← Sequential count of match group (0=nonmatching cases 7 Move matching cases to the 7 Display frequencies for create	=unique p is prim p is prim ing case e) top of ti ed variat	Number of matching and sorting variable or primary, 0=duplicate) ary Name: PrimaryFirst ary Name: MatchSequence he file bles	Jes:

- Jika Anda bermaksud untuk mengidentifikasi data duplikat untuk variabel *Prososial* (Kecenderungan Perilaku Prososial Anak) maka pilih itu dan tetapkan untuk kotak daftar *"Define matching cases by:"*.
- Jika Anda bermaksud untuk mengatur urutan data, sesudah proses ini, berdasarkan variabel *Usia*, maka pilih itu dan tetapkan untuk kotak daftar *"Sort within matching group by:"*.
- Tetapkan nama variabel untuk menyimpan status duplikasi. Misalnya *PrimaryFirst.*
- Klik <OK>

Hasil dari perintah tersebut adalah seperti ditunjukkan dalam gambar berikut.

BELAJAR STATISTIKA DENGAN UNPAD SAS

-	JK	Usia	SEO	Prososial	FL	JU	PrimaryFirst	
1	L	3	Menengah	21	7	4	1	
20	L	5	Menengah	23	5	4	0	
10	L	6	Menengah	23	5	5	0	
5	L	3	Atas	34	5	5	0	
19	L	4	Atas	34	4	3	0	
9	L	6	Menengah	34	6	4	0	
16	L	6	Atas	34	5	5	0	
4	L		Menengah	45	4	4	0	
12	L	4	Menengah	45	3	7	0	
30	Р	4	Atas	45	3	2	0	
8	L	5	Atas	45	5	9	0	
32	Р	5	Menengah	45	5	4	0	
23	L	5	Menengah	45	4	1	0	
17	L	3	Bawah	54	4	6	0	
28	Р	3	Bawah	54	5	7	0	
14	L	5	Bawah	54	5	2	0	
25	L	5	Bawah	54	4	4	0	
33	Ρ	6	Atas	54	6	5	0	
21	L	6	Menengah	56	6	2	1	
34	Ρ	3	Atas	65	4	6	0	
18	L	3	Bawah	65	3	7	0	
11	L	3	Atas	65	4	6	0	
29	P	4	Bawah	65	4	4	0	

Pada *Data View* Anda akan melihat ada variabel baru bernama *Pri-maryFirst* dengan nilai 0 atau 1, yang mengindikasikan status duplikasi atas kasus tersebut berdasarkan variabel yang ditentukan di atas.

Variabel yang ditetapkan untuk mengidentifikasai data duplikat boleh lebih dari satu. Kasus dianggap duplikat jika nilainya cocok untuk semua variabel terpilih. Jika Anda ingin mengidentifikasi hanya kasus yang cocok 100% dalam semua hal, pilih semua variabel.

Variabel yang ditetapkan untuk mengatur urutan data boleh lebih dari satu.

- Tetapkan itu sesuai kebutuhan agar duplikasi data mudah dilihat secara kasat mata.
- Untuk setiap pilihan variabel, Anda dapat menyortir urutan naik atau turun.

4. Menghitung Variabel

Nilai suatu variabel boleh jadi ingin ditetapkan berdasarkan nilai-nilai variabel lainnya atau berdasarkan ekspresi tertentu. Variabel tersebut boleh

jadi adalah berupa variabel yang telah dibuat sebelumnya atau berupa variabel baru. Untuk kebutuhan tersebut Anda dapat menggunakan perintah *Compute Variables* yang terdapat di dalam menu *Transform*.

ransform	Analyze	Help
Compu	rte Variable	s

Atas perintah tersebut maka Anda akan melihat kotak dialog sebagai berikut.

arget Variable:										
Rata2	II	Rata2 =	= (UAS	+ UTS]/2					~
Type & Label										,
									Function Group:	
(ID) Nilai UAS [UAS]	•••				7	0			All	P
lilai UTS (UTS)		-	_	4	4	-			Artitmethic CDE & Noncentral CDE	-
IQ] STATS]		-	<=	>=	4	5	6		Conversion	
SAM]		×	-	1=	1	2	3		Current Date/Time	
enis Kelamin (JK)					<u> </u>	-			Date Aritmetic	
		1	&		()	<u> </u>		Date creation	
		××	1	0		Delete	.		Function and Special Vari	able
									Abs	-
	ABSInu	mexor), 1	Vumeri	. Retu	rns the	absolu	ute value	of 🔺	Artan	
	numexp	r, which	must b	e nume	ric.				Cos	
									Exp	
									Lg10	
									Ln	
									Lngamma	
									Bod	
									Trung	
			1		000000	1	12272-00	1		

Lakukan langkah-langkah berikut untuk keperluan tersebut:

- Tuliskan nama variabel di dalam ruas *Target Variable*. Itu boleh berupa variabel baru atau variabel yang telah ada sebelumnya.
- Klik tombol
 yang berada di sebelahnya. Misalnya Anda menuliskan variabel *Rata2*, maka setelah tombol
 di-klik akan Anda lihat tulisan *Rata2* = di ruas sebelah kanannya.
- Pilih variabel yang akan ditetapkan dan klik tombol
 yang berada di sebelahnya.
- Klik tombol lambang operasi, angka, dan atau fungsi yang sesuai dengan kebutuhan Anda. Misalnya Anda akan menuliskan Rata2 = (UAS + UTS)/2

 Klik tombol *<Continue>* untuk menetapkan ekspresi tersebut ke dalam variabel yang ditetapkan.

D. MENGIMPOR DAN MENGEKSPOR TABEL

Sampai saat ini Unpad SAS baru dapat mengimpor dan mengekspor tabel dari dan ke dalam file teks yang berisi tabel data dengan simbol pemisah berupa tabulator *(tab delimited)* atau berupa skrip SQL.

1. File Teks Tab delimited

File-file teks *tab delimited* dapat dibuat secara manual atau file-file Microsoft Excel yang direkam sebagai file teks *tab delimited*. Baris pertama file teks tersebut harus berupa nama-nama variabel yang dipisahkan oleh simbol *tab*, dan baris-baris berikutnya berupa nilai untuk variabel-variabel tersebut yang juga dipisahkan oleh simbol *tabs*. Jangan lupa, variabel pertama harus bernama *ID* (lihat subbab B.3 di atas). Atribut *Type*, *Width*, *Columns*, dan *Align* untuk masing-masing variabel akan ditetapkan secara otomatis sesuai dengan nilai-nilai yang ditetapkan pada baris-baris berikutnya.

Berikut ini Anda dapat mencoba membuat file teks *tab delimited* secara manual. Jalankan aplikasi *Notepad* atau aplikasi penyunting teks lainnya.

 Pada baris pertama, tuliskan nama variabel *ID*, *SMA*, *JALUR*, *KUOTA*, dan *PENDAFTAR*. Gunakan tombol *tab* sebagai pemisah antara nama-nama variabel tersebut, yaitu seperti contoh berikut.

ID	SMA	JALUR	KUOTA	PENDAFTAR
1	1	1	3	1
2	2	1	2	1
3	3	1	0	0
4	4	1	3	0
5	5	1	0	0
6	6	1	2	2
7	7	1	2	1
8	8	1	3	0
9	9	1	5	1
10	10	1	5	0
11	11	1	0	4
12	12	1	3	0
13	13	1	0	0
14	14	1	0	0
15	15	1	3	0

16	16	1	3	0
17	17	1	1	0
18	18	1	5	0
19	19	1	1	0
20	20	1	4	0

- Pada baris kedua dan seterusnya, tuliskan nilai-nilai untuk setiap variabel. Gunakan tombol *tab* sebagai pemisah antara nilai-nilai tersebut, yaitu seperti contoh di atas.
- Rekam itu dengan nama "contoh.txt".

File "contoh.txt" tersebut merupakan file teks *tab delimited* dan dapat Anda impor dari Unpad SAS.

2. File skrip SQL

File skrip SQL berisi perintah-perintah SQL yang dapat dijalankan oleh MySQL. Setiap tabel data Unpad SAS secara internal terdiri dari 2 (dua) buah tabel, yaitu:

Tabel struktur – terdiri dari kolom *ID*, *Name*, *Type*, *Width*, *Dec*, *Label*, *Values*, *Missing*, *Columns*, *Align*, dan *Measure*. Nama tabel struktur diawali dengan tulisan "st_" dan diikuti oleh nama untuk tabel datanya. Misalnya, jika Anda bermaksud membuat tabel data dengan nama "contoh", maka nama tabel strukturnya adalah "st_contoh".

Perhatikan contoh perintah *Data Definition Language (DDL)* untuk membuat tabel struktur untuk tabel data bernama "contoh".

```
CREATE TABLE `st_contoh` (

`ID` smallint(6) NOT NULL,

`Name` varchar(50) DEFAULT NULL,

`Type` tinyint(4) DEFAULT NULL,

`Width` tinyint(4) DEFAULT NULL,

`Dec` tinyint(4) DEFAULT NULL,

`Label` varchar(255) DEFAULT NULL,

`Values` text,

`Missing` varchar(200) DEFAULT NULL,

`Columns` tinyint(4) DEFAULT NULL,

`Align` tinyint(4) DEFAULT NULL,

`Measure` tinyint(4) DEFAULT NULL,

`Measure` tinyint(4) DEFAULT NULL,

`Measure` tinyint(4) DEFAULT NULL,
```

Variabel-variabel untuk tabel data ditetapkan pada setiap baris data tabel struktur dengan ketentuan baris pertama data tabel struktur adalah untuk variabel *ID* pada tabel data dan baris-baris berikutnya adalah untuk variabel-variabel lainnya. Perhatikan pula contoh perintah *Data Manipulation Language (DML)* untuk menetapkan variabel.

```
INSERT INTO `st_contoh` (`ID`, `Name`, `Type`, `Width`, `Dec`,
`Label`, `Values`, `Missing`, `Columns`, `Align`, `Measure`)
VALUES
  (1,'ID',0,8,0,'','','8,1,0),
  (2,'Metode',0,8,3,NULL,'1=\"Praktikum\"\r\n2=\"Teori\"\r\n',
  NULL,15,1,0),
  (3,'Rangking',0,8,3,NULL,NULL,NULL,15,1,2);
```

Nilai untuk kolom *ID* adalah 1, 2, dan seterusnya yang menunjukkan urutan kolom variabel tersebut di dalam tabel data.

Nilai untuk kolom *Type* adalah 0=*Numeric*, 4=*Date*, dan 7=*String*. Nilai untuk kolom *Align* adalah 0=*Left*, 1=*Right*, dan 2=*Center*. Nilai untuk kolom *Measure* adalah 0=*Nominal*, 1=*Ordinal*, dan 2=*Scale*.

Tabel data – terdiri dari *n+1* kolom, dimana *n* adalah jumlah variabel yang ditetapkan ke dalam tabel struktur. Kolom pertama adalah *S*. Nilai kolom ini digunakan Unpad SAS sebagai tanda untuk kasus yang dipilih atau tidak. (Lihat C.2). Kolom kedua dan seterusnya adalah nama-nama variabel sesuai dengan yang ditetapkan ke dalam tabel struktur.

Sebagai contoh, di atas ditunjukkan bahwa variabel-variabel yang ditetapkan untuk tabel struktur adalah *ID, Metode,* dan *Rangking,* maka perintah *Data Definition Language (DDL)* untuk membuat tabel data bernama "contoh" adalah sebagai berikut.

```
CREATE TABLE `contoh` (
  `S` tinyint(4) DEFAULT '1',
  `ID` double(8,0) DEFAULT NULL,
  `Metode` double(8,3) DEFAULT NULL,
  `Rangking` double(8,3) DEFAULT NULL,
  UNIQUE KEY `ID` (`ID`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;
```

Berikut ini adalah contoh perintah *Data Manipulation Language (DML)* untuk menetapkan menambahkan 10 baris data untuk tabel "contoh".

```
INSERT INTO `contoh` (`S`, `ID`, `Metode`, `Rangking`) VALUES
(1,1,1.000,16.000),
(1,2,1.000,4.000),
(1,3,1.000,5.000),
(1,4,1.000,2.000),
(1,5,1.000,1.000),
(1,6,1.000,12.000),
(1,7,1.000,11.000),
(1,8,1.000,13.000),
```

```
(1,9,1.000,23.000),
(1,10,1.000,8.000);
```

3. Mengimpor Tabel

Lakukan langkah-langkah berikut untuk mengimpor file/tabel.

• Klik menu **File**, pilih submenu **Import Table**, seperti ditunjukkan pada gambar di bawah ini.

 Atas perintah tersebut maka akan ditampilkan kotak dialog seperti ditunjukkan pada gambar di bawah ini.

Look in	: 📗 UNPAD SA	\S	•	🗕 🔁 🖬	
œ.	Name	*	Date modifi	Туре	Size
Recent Places	cor_crame cor_jasper dbinit np_2rel np_krel_3 penelitian pdb samples	er 1	13/11/2018 31/10/2018 29/07/2018 24/10/2018 11/11/2018 16/11/2018 12/11/2018 28/10/2018 28/10/2018	File folder File folder File folder File folder File folder File folder File folder File folder	
Computer Computer Network	File name:	ppdb	12/11/2018	CVS File	3 Ki Open

• Tetapkan jenis file pada ruas *"File of type"* untuk memfilter daftar file yang akan dipilih.

BELAJAR STATISTIKA DENGAN UNPAD SAS

File <u>n</u> ame:	ppdb	•	<u>O</u> pen
Files of type:	Excel files (*.cvs)	-	Cancel
	Excel files (*.cvs)		- ⁽⁵⁾
	Text files (*.txt) SQL Script files (*.sql)		

- Pilih file yang akan di-impor dari daftar yang tersedia dan klik tombol <Open>.
- Atas perintah tersebut maka akan ditampilkan jendela *Import Table*, yaitu seperti ditunjukkan pada gambar di bawah ini.

🐉 Impo	ort Table: C:\l	Users\mustofa	a\AppData\F	loaming\UNPAD SAS\ppdb.cvs	
i 🧉	> 🖪 🔲				
ID	SMA	JALUR	KUOTA	PENDAFTAR	
1	1	1	3	1	ĺ.
2	2	1	2	1	
3	3	1	0	0	
4	4	1	3	0	
5	5	1	0	0	
6	6	1	2	2	
7	7	1	2	1	
в	8	1	3	0	L
9	9	1	5	1	
10	10	1	5	0	
11	11	1	0	4	
12	12	1	3	0	
13	13	1	0	0	
14	14	1	0	0	
15	15	1	3	0	
16	16	1	3	0	
17	17	1	1	0	
18	18	1	5	0	
19	19	1	1	0	
20	20	1	4	0	
21	21	1	3	0	
22	22	1	0	0	
23	23	1	3	0	
24	24	1	0	0	
25	25	1	3	0	
26	26	1	0	0	
27	27	1	2	1	
28	1	2	67	111	
29	2	2	68	99	
30	3	2	64	35	
31	4	2	68	145	
32	5	2	61	15	
33	6	2	61	118	
34	7	2	68	96	
35	8	2	73	49	

Jika itu berupa file teks tab delimited. Atau

```
😻 Import Table: C:\Users\mustofa\AppData\Roaming\UNPAD SAS\samples\cor_etj-samp.... 📼 😐
                                                                        X
📔 🗳 🖪 🔲 🖓 🕨
# UNPAD SAS 1.0.2
                                                                          *
# -----
        : localhost
# Host
                                                                          Ξ
# Port
           : 3306
# Database : sas
# Tables : st cor sample, cor sample
DROP TABLE IF EXISTS `st cor sample`;
DROP TABLE IF EXISTS 'cor sample';
#
# Structure for the `st cor sample` table :
#
CREATE TABLE `st cor sample` (
  'ID' smallint (6) NOT NULL,
  'Name' varchar(50) NOT NULL,
  'Type' tinyint(4) DEFAULT '0'
  'Width' tinyint(4) DEFAULT '8',
  'Dec' tinyint(4) DEFAULT '0',
  'Label' varchar(255) DEFAULT NULL,
  'Values' text,
  'Missing' varchar(200) DEFAULT NULL,
  'Columns' tinyint (4) DEFAULT '8',
  'Align' tinyint(4) DEFAULT '0',
  'Measure' tinyint(4) DEFAULT '0',
 PRIMARY KEY ('ID'),
  UNIQUE KEY 'Name' ('Name')
) ENGINE=MyISAM DEFAULT CHARSET=latin1;
# Data for the `st cor sample` table (LIMIT 0,500)
INSERT INTO `st_cor_sample` (`ID`, `Name`, `Type`, `Width`, `Dec`, `Lab
  (1, 'ID', 0, 8, 0, 'Case ID', '', '', 4, 1, 0),
```

Jika itu berupa file skrip SQL.

- Untuk mengimpor data atau skrip tersebut maka klik tombol berikut.
 - digunakan untuk membuat tabel baru. Pastikan baris pertama adalah berupa nama-nama variabel dan baris selebihnya adalah berupa nilai-nilai untuk variabel tersebut.
 - digunakan untuk menambahkan nilai-nilai ke dalam tabel yang sedang dibuka. Pastikan baris pertama adalah berupa nama-nama variabel yang sesuai dengan tabel yang sedang dibuka, dan baris selebihnya adalah berupa nilai-nilai untuk variabel tersebut.
 - >

digunakan untuk membuat tabel baru berdasarkan skrip yang diberikan.

4. Mengekspor Tabel

Lakukan langkah-langkah berikut untuk mengimpor file/tabel.

• Klik menu **File**, pilih submenu **Export Table**, seperti ditunjukkan pada gambar di bawah ini.

File	Edit	View	Data	T
ļ	New			-
1	<u>O</u> pen			
į	<u>C</u> lose			
2	Save			_
	S <u>a</u> ve A	s		-
1	mport	Table		
	Export	Table	2	-

 Atas perintah tersebut maka akan ditampilkan kotak dialog seperti ditunjukkan pada gambar di bawah ini.

Save in:	UNPAD SA	S	•	🗕 🔁 🖶	
C.	Name	*	Date modifi	Туре	Size
All and Discourse	cor_crame	r	13/11/2018	File folder	
Recent Places	🍶 cor_jaspen		31/10/2018	File folder	
	🍌 datasiswa		15/01/2019	File folder	
Desktop	🍌 dbinit		29/07/2018	File folder	
and the second s	Inp_2rel		24/10/2018	File folder	
6-10-	🍌 np_krel_3		11/11/2018	File folder	
Libraries	🍌 penelitian_	1	16/11/2018	File folder	
	鷆 ppdb		12/11/2018	File folder	
	鷆 samples		28/10/2018	File folder	
Computer	鷆 test_files		28/10/2018	File folder	
	ppdb.cvs		12/11/2018	CVS File	3 KE
Network					
	File <u>n</u> ame:	cor_cramer		•	<u>S</u> ave
	Save as type:	Excel files (* cvs)		-	Cancel

• Tetapkan jenis file pada ruas *"File of type"* untuk memfilter daftar file yang akan dipilih.

File <u>n</u> ame:	ppdb	•	<u>O</u> pen
Files of type:	Excel files (*.cvs)	-	Cancel
	Excel files (*.cvs)		~
	Text files (*.bt) SQL Script files (*.sql)		

• Pilih atau tulis nama file yang akan di-impor dari daftar yang tersedia dan klik tombol <Open>.

E. LATIHAN

Fakultas Psikologi Universitas XYZ melakukan penelitian pada 40 orang mahasiswa angkatan 2015 yang mengambil mata kuliah Statistika I dengan hasil data berikut.

			_					SKC)r it	EM .	TAS	KC	OMI	MITN	1EN1	Г			
NO	۲	ā	SAN	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	L	118	Т	3	4	4	4	4	4	4	3	3	4	4	4	4	4	4	3
2	Р	110	S	2	4	4	3	3	4	3	2	3	3	ვ	4	3	4	ვ	4
3	L	113	Т	3	3	3	4	3	3	2	2	3	3	2	4	3	4	ვ	3
4	Р	110	Т	2	4	3	ი	4	3	2	1	3	3	ი	4	1	ო	4	3
5	L	113	S	3	4	4	4	4	4	3	2	4	4	ი	4	3	4	4	3
6	L	118	S	3	4	4	4	3	4	3	2	3	4	4	4	4	4	4	3
7	L	123	S	3	4	4	3	2	4	4	2	4	3	4	4	3	4	4	3
8	L	121	Т	3	4	4	ვ	3	4	2	2	4	3	1	4	4	4	4	3
9	Р	116	S	2	4	4	ი	4	4	3	2	4	2	ი	4	4	4	4	3
10	Ρ	119	R	4	ვ	4	ვ	4	4	2	3	4	4	ა	4	3	4	ა	3
11	Ρ	116	R	3	4	4	ვ	2	4	2	2	4	4	ა	4	4	4	ა	4
12	L	119	Т	2	3	2	3	4	3	1	2	3	4	1	4	4	3	4	3
13	Р	116	Т	3	4	3	3	4	3	3	3	3	3	4	4	4	4	3	4
14	L	123	R	3	3	3	3	2	3	3	2	3	2	3	3	3	3	3	3
15	Р	125	Т	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
16	L	110	S	2	3	3	3	2	3	2	1	2	2	2	3	3	3	2	2
17	L	113	S	2	4	3	3	3	4	3	3	3	3	3	4	4	4	2	3
18	L	123	R	3	4	3	3	3	3	4	2	3	3	3	4	3	4	3	3
19	L	120	S	3	4	4	4	4	3	4	3	4	3	3	4	3	3	4	3
20	Ρ	126	R	3	4	4	4	3	4	3	3	3	3	4	4	4	4	3	2

Keterangan:

- Jenis Kelamin: terdiri dari laki-laki (L) dan perempuan (P)
- Kecemasan terhadap Statistika diukur melalui SAM (Statistics Anxiety Measure), dimana hasil pengukurannya dapat dikategorikan menjadi R=Rendah, S=Sedang dan T=Tinggi
- Skor item Task Commitment adalah skor komitmen murid terhadap tugas yang diberikan padanya, yang diukur melalui 16 item dan masing-masing item merupakan pernyataan dengan 4 pilihan jawaban. Jawaban di-skor sebagai berikut: Selalu=4, Sering=3, Kadang-kadang=2, dan Tidak pernah=1.

Dari data yang didapatkan, lakukanlah hal-hal berikut:

- 1. Input data
- 2. Urutkanlah data berdasarkan variabel di bawah ini:a. Jenis kelaminb. IQ (dari besar ke kecil)
- 3. Pilihlah data dari peserta yang memiliki IQ yang lebih rendah dari 125
- 4. Hitunglah skor total Task Commitment

2 Statistik Deskriptif

A. PENDAHULUAN

Dalam kegiatan penelitian, data yang kita peroleh melalui *survey*, sensus, atau sumber-sumber lain biasanya masih bersifat mentah *(raw data)*. Dengan menggunakan statistik deskriptif, maka kita dapat memberikan gambaran dari suatu data mentah dengan lebih ringkas dan teratur. Hal tersebut dapat kita lakukan dengan menggunakan tabel atau diagram. Berdasarkan tampilan tabel atau diagram tersebut, kita dapat menganalisis data yang diperoleh.

Selain menggunakan tabel atau diagram, dalam statistik deskriptif kita juga dapat mendeskripsikan suatu data melalui ukuran statistik atau yang biasa dikenal dengan istilah *summary statistics* (ringkasan statistik). Ada beberapa ukuran yang biasa digunakan dalam statistik deskriptif, yaitu:

- 1. Ukuran gejala pusat: Mean dan Modus.
- 2. Ukuran letak atau posisi: Median, Kuartil, Desil, dan Persentil.
- 3. Ukuran dispersi: *Index of Qualitative Variation, Range, Interquartile Range, Semi Interquartile Range, Standar deviasi, dan Varians.*
- 4. Ukuran distribusi: Skewness dan Kurtosis.

Untuk menampilkan tabel dan ukuran statistik, dalam Unpad SAS disediakan submenu *Descriptive Statistics* (di dalam menu *Analyze*) yang terdiri dari perintah *Frequencies, Descriptive, Explore,* dan *Crosstabs.*

B. FREQUENCIES

Frequencies menampilkan tabel frekuensi dan ringkasan statistik dari suatu variabel. Ringkasan yang ditampilkan antara lain berupa ukuran gejala pusat, ukuran letak, ukuran dispersi, dan ukuran distribusi.

Contoh 2.1:

Suatu penelitian dilakukan untuk mengetahui faktor-faktor yang berhubungan dengan penguasaan materi mata kuliah Statistika pada mahasiswa Fakultas MIPA Universitas Siswa Bangsa. Faktor-faktor yang diduga berhubungan dengan penguasaan materi Statistika adalah tingkat kecerdasan (IQ), sikap mahasiswa terhadap Statistika (SATS), dan kecemasan terhadap Statistika (SAM). Berikut ini adalah data penelitian yang diperoleh:

NO	UAS	UTS	IQ	SATS	SAM	JK	NO	UAS	UTS	IQ	SATS	SAM	JK
1	50	70	118	68	3	1	16	65	75	110	98	2	1
2	50	70	110	65	2	1	17	65	80	113	90	2	1
3	55	75	113	60	3	1	18	70	85	123	80	1	1
4	55	75	110	70	3	1	19	70	90	120	102	2	1
5	55	70	113	86	2	1	20	70	90	126	107	1	1
6	60	75	118	89	2	1	21	70	70	118	98	1	2
7	60	70	123	90	2	1	22	70	70	126	90	2	2
8	60	70	121	80	3	1	23	75	75	120	80	2	2
9	60	70	116	98	2	1	24	75	80	120	85	2	2
10	60	80	119	97	1	1	25	75	85	123	85	1	2
11	65	80	116	89	1	1	26	75	90	121	80	1	2
12	65	85	119	85	3	1	27	75	90	128	100	1	2
13	65	85	116	95	3	1	28	75	95	130	105	2	2
14	65	85	123	100	1	1	29	80	95	130	110	1	2
15	65	80	125	100	3	1	30	80	90	129	107	2	2

Keterangan:

- Penguasaan materi Statistika diukur dengan Nilai UTS dan UAS Statistika
- Tingkat kecerdasan mahasiswa diukur dengan IQ
- Sikap terhadap Statistika diukur melalui SATS (Student Attitude toward Statistics) dimana SATS merupakan alat ukur yang terdiri dari 30 pernyataan dengan skala penilaian sebagai berikut: 1=sangat tidak setuju, 2=tidak setuju, 3=setuju, dan 4=sangat setuju.
- Kecemasan terhadap Statistika diukur melalui SAM *(Statistics Anxiety Measure)* dimana hasil pengukurannya dapat dikategorikan menjadi tingkatan berikut ini: 1=Rendah, 2=Sedang, dan 3=Tinggi.
- JK = Jenis kelamin (1=Laki-laki, 2=Perempuan)

Masalah 1:

Peneliti ingin melihat jumlah responden pada masing-masing kategori Jenis Kelamin dan SAM. Selain itu, ia juga ingin menampilkan diagram batang untuk masing-masing kategori berdasarkan frekuensinya. Untuk keperluan tersebut lakukan langkah-langkah sebagai berikut.

- 1. Buat berkas dengan nama file *datasiswa* menggunakan data di atas.
- 2. Pilih perintah Analyze->Descriptive Statistics->Frequencies

3. Pilih variabel JK dan SAM seperti pada gambar di bawah ini.

	Variable(s):	
	🚴 Jenis Kelamin [JK]	Statistic
Nilai UAS [UAS]	[SAM]	Chart
Nilai UTS [UTS]		Format
Display frequency tables		

- 4. Beri tanda contreng pada "Display frequency tables".
- 5. Klik tombol **Chart**... untuk menampilkan kotak dialog **Frequencies**: **Charts**.

	e	
None		
Barcha	arts	
Pie cha	arts	
C Histogr	ams:	
E Wi	th normal curv	e
Chart Val	ues	
	ncies (C. Pe	ercentages
• Freque		

- 5. Pilih tombol **Bar charts** dan klik tombol **<Continue>**.
- 6. Klik tombol **<OK>**.

Luaran yang dihasilkan adalah sebagai berikut.

Descriptive Statistics

Frequencies

Table: datasiswa Variable: Jenis Kelamin

FREQUENCY:

ЈК	Frequency	Percent	Valid Percent	Cummulative Percent
Laki-laki	20	66,6667	66,6667	66,6667
Perempuan	10	33,3333	33,3333	100,0000

Statistics

BAR CHART:

Variable: SAM

SAM	Frequency	Percent	Valid Percent	Cummulative Percent
Rendah	10	33,3333	33,3333	33,3333
Sedang	13	43,3333	43,3333	76,6666
Tinggi	7	23,3333	23,3333	99,9999
N 30	ART:			
12-				
10-				
-8-				
Frequen 9				
4-				
2-				
0				

Masalah 2:

Peneliti ingin mengetahui ukuran gejala pusat, ukuran letak, ukuran dispersi, dan ukuran distribusi dari variabel yang skala pengukurannya sesuai dengan ukuran yang akan dihitung (misal: *mean* dari variabel Nilai UAS, *IQV* dari variabel JK, dsb). Selain itu, ia juga ingin menghitung setiap ukuran dengan rumus secara manual dan menggunakan Program Unpad SAS.

Berikut ini adalah langkah-langkah pengerjaannya:

1. Ukuran gejala pusat

Ukuran gejala pusat yang dapat digunakan untuk mewakili himpunan data diberikan dalam tabel berikut:

BELAJAR STATISTIKA DENGAN UNPAD SAS

No.	Skala Pengukuran	Ukuran GejalaPusat
1	Nominal	Modus
2	Ordinal	Median dan Modus
3	Interval atau Rasio	Mean, Median dan Modus

Penghitungan ukuran gejala pusat secara manual.

a. Mean (rata-rata nilai)

Mean adalah suatu nilai pusat (keseimbangan) untuk suatu variabel kontinu. *Mean* populasi disimbolkan dengan μ , sedangkan *mean* sampel disimbolkan dengan \bar{x} . Penghitungan rata-rata dilakukan dengan menjumlahkan seluruh nilai data suatu kelompok sampel, kemudian dibagi dengan ukuran sampel tersebut. Jadi jika suatu sampel acak dengan ukuran sampel *n*, maka bisa dihitung rata-rata dari sampel tersebut dengan rumus sebagai berikut:

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

dimana:

 \bar{x} = rata-rata hitung;

 x_i = nilai sampel ke-*i*;

n = jumlah sampel

Data UAS dapat juga disajikan seperti dalam tabel berikut:

UAS	Frekuensi
50	2
55	3
60	5
65	7
70	5
75	6
80	2

Berikut ini adalah penghitungan mean variabel UAS:

$$\bar{x} = \frac{50 + 50 + 55 + \dots + 75 + 80 + 80}{30}$$
$$\bar{x} = \frac{1980}{30}$$
$$\bar{x} = 66,0$$

b. Median

Median adalah nilai yang terletak di tengah dari suatu kumpulan data yang sudah diurutkan dari kecil ke besar. Penghitungan median dilakukan dengan cara sebagai berikut.

• Urutkan data mulai dari nilai terkecil sampai nilai terbesar. Pengaturan urutan terhadap variabel UAS adalah sebagai berikut.

50 50 55 55 55 60 60 60 60 60 65 65 65 65 65 65 65 70 70 70 70 70 75 75 75 75 75 75 80 80

- Nilai median dihitung menurut rumus Me = x_{(n+1)/2}
- Dalam contoh di atas, jumlah sampel adalah 30, maka Me = $x_{(30+1)/2}$ atau Me = $x_{15,5}$ atau M_e berada di antara x_{15} dan x_{16} .
- Nilai Me dihitung dengan menjumlahkan x_{15} dan x_{16} kemudian dibagi 2. Me = (65 + 65) / 2 atau Me = 65
- Data UAS dapat juga disajikan seperti dalam tabel berikut:

UAS	Frekuensi	Frekuensi Kumulatif
50	2	2
55	3	5
60	5	10
65	7	17
70	5	22
75	6	28
80	2	30

- Median terletak pada urutan di antara x₁₅ dan x₁₆.
- Me = 65

c. Modus

Modus adalah nilai yang paling banyak muncul atau nilai yang memiliki frekuensi paling tinggi dari suatu kelompok data. Suatu kelompok data yang memiliki hanya satu modus disebut *unimodal*, kelompok data yang mempunyai dua modus disebut *bimodal*, kelompok data yang memiliki lebih dari dua modus disebut *multimodal*, sementara kelompok data yang tidak memiliki modus disebut sebagai *no mode*.

Penghitungan modus dilakukan dengan cara sebagai berikut.

 Buatlah distribusi data untuk variabel yang dimaksud. Untuk variabel UAS distribusi datanya adalah sebagai berikut.

UAS	Frekuensi
50	2
55	3
60	5
65	7
70	5
75	6
80	2

• Dari distribusi data tersebut terlihat bahwa frekuensi yang paling besar adalah 7. Jadi modus variabel UAS adalah 65.

Penghitungan ukuran gejala pusat dengan menggunakan Unpad SAS.

- Buka file *data_mahasiswa* pada program Unpad SAS Anda.
- Pilih perintah Analyze->Descriptive Statistics->Frequencies
- Pilih variabel **Nilai UAS** seperti pada gambar di bawah ini.

	Variable(s):	
[IQ] II [SAM] II [STATS]	🛷 Nilai UAS [UAS]	Statistic Chart
Nilai UTS [UTS]		Format
I → Display frequency tables		
	David Council	

• Untuk memilih ukuran statistik, maka Klik Statistics ...

= Quartilaa	Central Tendency
	j♥ mean
	IV Median
Percentile(s):	Modus
Add	🗖 Sum
Change	
<u>R</u> emove	
	Values are group mid
ispersion	Distribution
🗆 S <u>t</u> d. deviation 📁 Mjnimum	🗖 Ske <u>w</u> ness
[—] ⊻ariance / Ma <u>x</u> imum	<u> </u>
🗆 Ra <u>n</u> ge 📄 S. <u>E</u> . mean	
🗌 I.quart. range 📄 I.qual. variation	

- Untuk menghitung ukuran gejala pusat maka beri tanda contreng pada Mean, Median, dan Modus seperti gambar di atas.
- Klik <Continue>, kemudian klik <OK>. Setelah itu akan muncul luaran seperti gambar di bawah ini.

Descriptive Statistics

Frequencies

Table: datasiswa Variable: Nilai UAS

FREQUENCY:

UAS	Frequency	Percent	Valid Percent	Cummulative Percent
[50]	2	6,6667	6,6667	6,6667
[55]	3	10,0000	10,0000	16,6667
[60]	5	16,6667	16,6667	33,3334
[65]	7	23,3333	23,3333	56,6667
[70]	5	16,6667	16,6667	73,3334
[75]	6	20,0000	20,0000	93,3334
[80]	2	6,6667	6,6667	100,0001

Ternyata kita dapat melihat bahwa penghitungan ukuran gejala pusat (*mean*, *median*, dan modus) dari variabel UAS secara manual dan Unpad SAS menunjukkan hasil yang sama, yaitu *Mean*=66,0, *Median*=65,0, dan *Modus*= 65,0.

2. Ukuran Letak atau Posisi

Penghitungan ukuran letak secara manual.

a. Kuartil (Quartile)

Kuartil adalah data yang membagi posisi sekumpulan data yang telah diurutkan dari kecil ke besar, menjadi empat bagian. Dalam satu urutan data terdapat 3 kuartil, yaitu kuartil bawah, kuartil tengah, dan kuartil atas.

Cara menentukan kuartil adalah sebagai berikut.

 Kuartil bawah adalah data pada posisi ¼ dari kumpulan data yang telah diurutkan. Kuartil bawah disimbolkan dengan Q₁.

- Kuartil tengah adalah data pada posisi 2/4 dari kumpulan data yang telah diurutkan. Kuartil tengah sama dengan median. Kuartil tengah disimbolkan dengan Q_2 .
- Kuartil atas adalah data pada posisi ³/₄ dari kumpulan data yang telah diurutkan. Kuartil atas disimbolkan dengan Q₃.
- Posisi atau Letak kuartil dihitung berdasarkan rumus

$$Q_i = x_{i(n+1)/4}$$

dimana:

- *i* = indeks kuartil yaitu 1, 2, 3
- n = banyaknya data
- Berikut ini adalah penghitungan posisi kuartil untuk variabel UAS.

$$Q_1 = x_{1(30+1)/4} = x_{31/4} = x_{7,75}$$
$$Q_2 = x_{2(30+1)/4} = x_{62/4} = x_{15,5}$$
$$Q_3 = x_{3(30+1)/4} = x_{93/4} = x_{23,25}$$

atau

Posisi Q_1 = 7,75

```
Posisi Q<sub>2</sub>= 15,50
```

Posisi *Q*³= 23,25

• Berdasarkan posisi kuartil pada urutan data maka dapat ditentukan ketiga kuartilnya, yaitu:

50 50 55 55 55 60 60 60 60 60 65 65 65 65 65 65 65 70 70 70 70 70 75 75 75 75 75 75 80 80

- Jadi, Q_1 adalah 60, Q_2 adalah 65, dan Q_3 adalah 75.
- b. Desil (Decile)

Desil adalah data yang membagi posisi sekumpulan data yang telah diurutkan dari kecil ke besar menjadi sepuluh bagian. Dalam satu urutan data terdapat 9 desil, masing masing disebut D_1 sampai D_9 .

Cara menentukan desil adalah sebagai berikut.

Posisi atau Letak desil dihitung berdasarkan rumus

 $D_i = x_{i(n+1)/10}$

dimana:

- *i* = indeks desil yaitu 1, 2, 3, 4, 5, 6, 7, 8, 9
- n = banyaknya data
- Berikut ini adalah penghitungan posisi desil untuk variabel UAS.

 $D_1 = x_{1(30+1)/10} = x_{31/10} = x_{3.1}$ $D_2 = x_{2(30+1)/10} = x_{62/10} = x_{6,2}$ $D_3 = x_{3(30+1)/10} = x_{93/10} = x_{9,3}$ $D_4 = x_{4(30+1)/10} = x_{124/10} = x_{12,4}$ $D_5 = x_{5(30+1)/10} = x_{155/10} = x_{15,5}$ $D_6 = x_{6(30+1)/10} = x_{186/10} = x_{18,6}$ $D_7 = x_{7(30+1)/10} = x_{217/10} = x_{21,7}$ $D_8 = x_{8(30+1)/10} = x_{248/10} = x_{24,8}$ $D_9 = x_{9(30+1)/10} = x_{279/10} = x_{27.9}$ atau Posisi $D_1 = 3,1$ Posisi $D_2 = 6,2$ Posisi $D_3 = 9,3$ Posisi D_4 = 12,4 Posisi $D_5 = 15,5$ Posisi D_6 = 18,6 Posisi $D_7 = 21,7$ Posisi D_8 = 24,8 Posisi D_9 = 27,9

 Berdasarkan posisi desil pada urutan data maka dapat ditentukan kesembilan desilnya, yaitu:

50 50 55 55 55 60 60 60 60 60 65 65 65 65 65 65 65 70 70 70 70 70 75 75 75 75 75 75 80 80

- Jadi, D_1 adalah 55, D_2 adalah 60, dan D_3 adalah 60, D_4 adalah 65, D_5 adalah 65, D_6 adalah 70, D_7 adalah 70, D_8 adalah 75, dan D_9 adalah 75.
- c. Persentil (Percentile)

Persentil adalah data yang membagi posisi sekumpulan data yang telah diurutkan dari kecil ke besar menjadi seratus bagian. Dalam satu data, terdapat 99 persentil. Posisi Persentil dapat dirumuskan sebagai berikut:

$$P_i = \frac{i(n+i)}{100}$$

dimana:

 P_i = persentil ke-i

i = indeks persentil yaitu angka 1-99

n = jumlah data

Contohnya, ketika kita ingin mencari tahu nilai persentil ke-50 dan ke-60 dari UAS statistika, maka letak P_{50} dan P_{60} dapat dihitung dengan:

Posisi $P_{50} = 50(30+1)/100 = 15,5$ Posisi $P_{60} = 60(30+1)/100 = 18,6$

Berdasarkan urutan, Persentil ke-50 dan ke-60 adalah:

50 50 55 55 55 60 60 60 60 60 65 65 65 65 65 65 65 65 70 70 70 70 70 75 75 75 75 75 75 80 80

Penghitungan ukuran letak dengan menggunakan Unpad SAS

- Buka file datasiswa.
- Pilih perintah Analyze->Descriptive Statistics->Frequencies
- Pilih variabel **Nilai UAS** seperti pada gambar di bawah ini.

		Variable(s):		1000
🛷 [IQ]		Nilai U/	AS [UAS]	Statistic
ISAM]				Chart
♣ Jenis Kelamin [J ✔ Nilai UTS [UTS	<u>ik)</u>]] m	•		Format
Display frequence	cy tables		1	
		D	0 1	11-1-

• Untuk memilih ukuran statistik, maka Klik Statistics ...

BELAJAR STATISTIKA DENGAN UNPAD SAS

ercentile Agines	Central Tendency
🔽 <u>Q</u> uartiles	🔲 Mean
🔽 Decile	🔲 Median
✓ Percentile(s):	🔲 Modus
Add 50	🗖 Sum
Change	
1244	
<u> </u>	
	Values are group mid;
Bemove	Values are group mid; Distribution Skewness
	Values are group midp Distribution Skewness Kurtosis
	Values are group midp Distribution Ske <u>w</u> ness <u>K</u> urtosis
	Values are group midp Distribution Ske <u>w</u> ness Kurtosis

- Untuk menghitung ukuran letak maka beri tanda contreng pada Quartile, Decile, dan Percentile seperti gambar di atas.
- Klik **Continue**, kemudian klik **OK**. Setelah itu akan muncul luaran seperti gambar di bawah ini.

Descriptive Statistics

Frequencies

Table: datasiswa Variable: Nilai UAS

N		30
PERCENTIL	E VALUES:	2.
Quartile-1	pos: 7,75	60,00
Quartile-2	pos: 15,50	65,00
Quartile-3	pos: 23,25	75,00
Decile-1	pos: 3,10	55,00
Decile-2	pos: 6,20	60,00
Decile-3	pos: 9,30	60,00
Decile-4	pos: 12,40	65,00
Decile-5	pos: 15,50	65,00
Decile-6	pos: 18,60	70,00
Decile-7	pos: 21,70	70,00
Decile-8	pos: 24,80	75,00

Decile-9	pos: 27,90	75,00
Percentile-50	pos: 15,50	65,00
Percentile-60	pos: 18,60	70,00

Ternyata kita dapat melihat bahwa penghitungan ukuran letak (kuartil dan desil) dari variabel *UAS* secara manual dan Unpad SAS menunjukkan hasil yang sama, baik posisi maupun nilainya, seperti dapat dilihat pada penghitungan di atas.

3. Ukuran Dispersi

Ukuran dispersi yang dapat digunakan untuk mewakili himpunan data diberikan dalam tabel berikut:

No	Skala Pengukuran	Ukuran Dispersi
1	Nominal	Index of Qualitative Variations
2	Ordinal	Range, Inter Quartile Range, Semi Inter Quartile Range, Index of
		Qualitative Variations
3	Interval/Rasio	Standar Deviasi, Varians, Range, Inter Quartile Range, Semi Inter
		Quartile Range, Index of Qualitative Variations

Penghitungan ukuran dispersi secara manual

a. Varians

Varians merupakan rata-rata dari kuadrat jarak setiap nilai data dari nilai *mean* (\bar{x}). Varians populasi disimbolkan dengan σ^2 sedangkan Varians Sampel disimbolkan oleh s^2 . Varians dihitung dengan rumus sebagai berikut.

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n - 1}$$

dimana:

 s^2 = varians x_i = nilai x yang ke-*i* \bar{x} = rata-rata n = jumlah data

Berikut ini adalah penghitungan varians UAS Statistika.

$$s^{2} = \frac{(50 - 66)^{2} + (50 - 66)^{2} + \dots + (80 - 66)^{2} + (80 - 66)^{2}}{29}$$
$$s^{2} = \frac{256 + 256 + \dots + 196 + 196}{29}$$

$$s^{2} = \frac{2020}{29}$$
$$s^{2} = 69,6552$$

b. Simpangan Baku (Standar Deviasi)

Simpangan baku merupakan akar dari varians. Simpangan baku populasi disimbolkan dengan σ sedangkan simpangan baku sampel disimbolkan oleh *s*. Simpangan baku dihitung dengan rumus sebagai berikut.

$$\sigma = \sqrt{\sigma^2}$$
$$s = \sqrt{s^2}$$

Berikut ini adalah penghitungan simpangan baku untuk variabel UAS.

$$s = \sqrt{69,6552}$$

$$s = 8,3460$$

- c. Nilai minimun, Nilai Maksimum, dan Range
 - Nilai minimum adalah nilai terkecil dan nilai maksimum adalah nilai terbesar dari variabel tertentu. Untuk variabel UAS di atas, nilai minimum adalah 50 dan nilai maksimum adalah 80.
 - *Range* adalah selisih nilai maksimum dengan nilai minimum dari variabel tertentu.

R = Nilai maksimum – Nilai minimum

• Untuk variabel *UAS* di atas, nilai *range* adalah:

R = 80 - 50R = 30

- d. Standard Error of Mean
 - Standard Error of Mean adalah ukuran seberapa jauh nilai mean bervariasi dari satu sampel ke sampel lainnya yang diambil dari distribusi yang sama.
 - *Standard Error of Mean* dihitung menurut rumus

$$SE = \frac{s}{\sqrt{n}}$$

Untuk variabel UAS di atas, nilai SE adalah:

$$SE = \frac{8,3460}{\sqrt{30}}$$

SE = 1,5238

- e. Interquartile Range
 - *IR (interquartile range)* digunakan untuk menghitung ukuran penyimpangan untuk data ordinal. *IR* dihitung menurut rumus: $IR = Q_3 - Q_1$
 - Untuk variabel *UAS* di atas, nilai *IR* adalah:

$$IR = 75 - 60$$

 $IR = 15$

- f. Semi-Interquartile Range
 - Semi-Interquartile Range dihitung menurut rumus:

 $SIR = \frac{1}{2}(Q_3 - Q_1)$

- Untuk variabel UAS di atas, nilai SIR adalah: SIR = ½(75-60)
 SIR = ½(15)
 - *SIR* = 7,5
- g. Index of Qualitative Variation
 - Selanjutnya, dalam penghitungan ukuran dispersi terdapat satu istilah lagi, yaitu *Index of Qualitative Variation (IQV)*. Penghitungan *IQV* adalah salah satu keunggulan Unpad SAS yang tidak ada dalam program statistika lainnya, termasuk SPSS. *IQV* merupakan penghitungan ukuran dispersi untuk data yang bersifat nominal. Penghitungan *IQV* berdasarkan rasio dari jumlah perbedaan dalam suatu distribusi dengan kemungkinan terbesar perbedaan dalam distribusi tersebut. Nilai yang dihasilkan memiliki rentang dari 0 sampai 1. *IQV* dihitung menurut rumus:

$$IQV = \frac{K(100^2 - \sum_{i=1}^{K} Pct_i^2)}{100^2(K-1)}$$

dimana: *K* = jumlah kelas *Pct_i* = persentasi kelas yang ke-i *i* = nomor kelas • Berikut adalah penghitungan *IQV* untuk variabel Jenis Kelamin secara manual.

	JK	Frekuensi	Persen
	1	20	66,6667%
	2	10	33,3333%
$IQV = \frac{2(100^2 - (66, 6))}{10}$	$\frac{5667}{10^2}$	$\frac{7^2 + 33,33}{1}$	333 ²)
IQV = 0,8889	,0 (1)	

Penghitungan ukuran dispersi menggunakan Unpad SAS

- Buka file *datasiswa* pada program Unpad SAS Anda.
- Pilih perintah Analyze->Descriptive Statistics->Frequencies
- Pilih variabel *UAS* seperti pada gambar di bawah ini.

		Variable(s):		
🖗 [IQ]		🔗 Nilai UAS [UAS]	Stat	istic
ISAM]			Ch	Chart
Jenis Kelamin [JK]	m)		For	nat

• Untuk memilih ukuran statistik, maka Klik Statistics ...

	Central Tendency
<u>Q</u> uartiles	🥅 Mean
Decile	🔲 Median
Percentile(s):	🔲 Modus
Add	🗖 Sum
Change	
Bemove	
	∨alues are group midp
Dispersion	Distribution
✓ Std. deviation	🔲 Ske <u>w</u> ness
	🗖 Kurtosis
▼ <u>V</u> ariance	
⊽ ⊻ariance I⊽ Maximum ⊽ Ra <u>n</u> ge I⊽ S. <u>E</u> . mean	
✓ <u>Variance</u> ✓ Maximum ✓ Range ✓ S.E. mean ✓ I.quart. range ✓ I.quart. range	

• Klik <Continue>, kemudian klik <OK>. Setelah itu akan muncul luaran seperti gambar di bawah ini.

Descriptiv	ve Sta	tistics	
Frequencie	S		
Table: datasis Variable: Nila	wa i <mark>UAS</mark>		
Statistics		1	
N	30		
DISPERSION:	ISPERSION:		
Std.Deviation	8,3460		
Variance	69,6552		
Range	30,0000		
Min	50,0000		
Max	80,0000		
S.E. mean	1,5238		
IQV	0,9696		
IR	15,00		
SIR	7,50		

Ternyata kita dapat melihat bahwa penghitungan ukuran dispersi dari variabel *UAS* secara manual dan program Unpad SAS menunjukkan hasil yang sama, seperti dapat dilihat pada penghitungan di atas.
Penghitungan IQV menggunakan Unpad SAS

- Buka file *datasiswa* pada program Unpad SAS Anda.
- Pilih perintah Analyze->Descriptive Statistics->Frequencies
- Pilih variabel *JK* seperti pada gambar di bawah ini.

A 1101		Variable(s):	elamin []K]	Statistic
		00 Jenis K	elanın (əz)	Ol i
👖 [STATS] 🖉 Nilai HAS (HAS	1			
Nilai UTS [UTS	a) 1 II)	•		Format
	cy tables			
 Display frequence 			2	

• Untuk memilih ukuran statistik, maka Klik Statistics ...

Mean Median Modus Sum /alues are group midpo
Median Modus Sum /alues are group midpo
Modus Sum /alues are group midpo
Sum
/alues are group midpo
/alues are group midpo
alues are group midpo
Skoupooo
Kurtosis
Dancere

• Klik <Continue>, kemudian klik <OK>. Setelah itu akan muncul luaran seperti gambar di bawah ini.

Des	criptiv	e Statistics
Freq	uencie	s
Table Varia Statist	: datasis ble: Nilai ics	wa UAS
N	30	-
DISP	ERSION:	
IQV	0,9696	

Ternyata kita dapat melihat bahwa penghitungan ukuran dispersi *IQV* dari variabel *JK* secara manual dan program Unpad SAS menunjukkan hasil yang sama, seperti dapat dilihat pada penghitungan di atas.

4. Ukuran Distribusi

Penghitungan ukuran distribusi secara manual.

1. Skewness (kemiringan)

Skewness (kemiringan) suatu kurva dapat dillihat dari perbedaan letak *mean*, median, dan modusnya. Ukuran kemiringan data terbagi atas 3 bagian, yaitu :

- Kemiringan data ke arah kiri (*negatively skewed*) dimana nilai modus > median > *mean*
- Kemiringan data simetris dimana nilai modus = median = mean
- Kemiringan data ke arah kanan (*positively skewed*) dimana nilai modus < median < *mean*.

Ada beberapa rumus yang digunakan dalam perhitungan skewness, yaitu:

Skewness Pearson I:

$$sk = \frac{\bar{x} - Mo}{s}$$

• *Skewness* Pearson II:

$$sk = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^3}{ns^3}$$

• *Skewness* Bowley:

$$sk = \frac{Q_3 - 2Q_2 + Q_1}{Q_3 - Q_1}$$

• *Skewness* Percentile:

$$sk = \frac{P_{90} - 2P_{50} + P_{10}}{P_{90} - P_{10}}$$

Skewness Moment:

$$\alpha_3 = \frac{M^3}{s^3} = \frac{\frac{1}{2}\sum_{i=1}^k (x_i - \bar{x})^3 f_i}{s^3}$$

• *Skewness* Fisher-Pearson:

$$\alpha_3 = \frac{n}{(n-1)(n-2)} \sum_{i=1}^n \left(\frac{x_i - \bar{x}}{s}\right)^3$$

Berikut adalah penghitungan *skewness* untuk variabel UAS secara manual.

• Skewness Pearson I:

$$sk = \frac{66,0-65}{8,3460} = 0,1198$$

• Skewness Pearson II:

$$sk = \frac{(50 - 66,0)^3 + \dots + (80 - 66,0)^3}{30\,8,3460^3}$$
$$sk = \frac{4096 + 4096 + \dots + 2744 + 2744}{17440,19}$$
$$-3090$$

$$sk = \frac{-3090}{17440,19}$$

$$sk = -0,1772$$

Skewness Bowley:

$$sk = \frac{75 - 2 * 65 + 60}{75 - 60}$$
$$sk = \frac{5}{15} = 0,3333$$

Skewness Percentile:

$$sk = \frac{75 - 2 * 65 + 55}{75 - 55}$$
$$sk = \frac{0}{20} = 0$$

Skewness Moment:

$$\alpha_3 = \frac{\frac{1}{2}((50 - 66, 0)^3 2 + \dots + (80 - 66, 0)^3 2)}{8,3460^3}$$

 $\alpha_3 = \frac{\frac{1}{2}(-3090)}{581,3398} = -2,6576$

Skewness Fisher-Pearson:

$$\alpha_{3} = \frac{30}{(30-1)(30-2)} \left(\left(\frac{50-66}{8,3460} \right)^{3} + \dots + \left(\frac{80-66}{8,3460} \right)^{3} \right)$$

$$\alpha_{3} = \frac{30}{812} (-7,0458 + \dots + 4,7201)$$

$$\alpha_{3} = \frac{30}{812} (-5,3153)$$

$$\alpha_{3} = -0,1964$$

2. Kurtosis (kelancipan)

Kurtosis (kelancipan) dinilai sebagai bentuk distorsi dari kurva normal. Tingkat kelancipan diukur dengan membandingkan bentuk keruncingan kurva distribusi data dengan kurva normal. Kurva yang lebih lebih runcing dari distribusi normal dinamakan *leptokurtik*, yang lebih datar *platikurtik*, dan distribusi normal disebut *mesokurtik*. Distribusi normal memiliki kurtosis = 3, sementara distribusi yang *leptokurtik* memiliki kurtosis > 3 dan distribusi yang *platikurtik* memiliki kurtosis < 3

Gambar 2.2: Grafik Kurtosis

Ada beberapa rumus yang digunakan dalam perhitungan kurtosis, yaitu:

• Koefisien Keruncingan:

$$\alpha_4 = \frac{\frac{1}{n} \sum_{i=1}^k (x_i - \bar{x})^4 f_i}{s^4}$$

• Koefisien Kurtosis Persentil:

$$K = \frac{\frac{1}{2}(Q_3 - Q_1)}{P_{90} - P_{10}}$$

• Kurtosis Fisher-Pearson:

$$\alpha_4 = \frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum_{i=1}^n \left(\frac{x_i - \bar{x}}{s}\right)^4 - \frac{3(n-1)^2}{(n-2)(n-3)}$$

Berikut adalah penghitungan kurtosis untuk variabel UAS secara manual.

• Koefisien Keruncingan:

$$\alpha_4 = \frac{\frac{1}{30}((50 - 66,0)^4 2 + \dots + (80 - 66,0)^4 2)}{8,3460^4}$$
$$\alpha_4 = \frac{\frac{1}{30}(298960)}{4851,8430}$$
$$\alpha_4 = \frac{9965,3333}{4851,8430} = 2,0539$$

• Koefisien Kurtosis Persentil:

$$K = \frac{\frac{1}{2}(75 - 60)}{75 - 55}$$
$$K = \frac{7,5}{20} = 0,3750$$

• Kurtosis Fisher-Pearson:

$$\alpha_4 = \frac{930}{21924} \left(\left(\frac{50-66}{8,3460} \right)^4 + \ldots + \left(\frac{80-66}{8,3460} \right)^4 \right) - \frac{2523}{756} \\ \alpha_4 = 0,0424 (13,5074 + \ldots + 7,9178) - 3,3373 \\ \alpha_4 = 0,0424 * 61,6178 - 3,3373 \\ \alpha_4 = -0,7236$$

Penghitungan ukuran distribusi dengan Unpad SAS.

- Buka tabel *data_mahasiswa*.
- Pilih menu Analyze->Descriptive Statistics->Frequencies
- Pilih variabel *Nilai UAS* seperti pada gambar di bawah ini.

🖉 [IQ]	Nilai UAS [UAS]	Statistic
ISAM]			Chart
& Jenis Kelamin [JK] ∥Milai UTS [UTS]			Format
Display frequency tables			î

• Untuk memilih ukuran statistik, maka Klik **Statistics**.

BELAJAR STATISTIKA DENGAN UNPAD SAS

Percentile Values	Central Tendency
🔲 <u>Q</u> uartiles	🔲 Mean
🗂 Decile	🔲 Median
🗖 <u>P</u> ercentile(s):	Modus
Add	🗖 Sum
Change	
Fuquide	
<u>B</u> emove	
<u>R</u> emove	Values are group mid
Remove Dispersion	Values are group mid
	Ustribution
	Values are group mid Distribution ✓ Skewness ✓ Kurtosis
Dispersion Std. deviation Minimum Variance Maximum Range S.E. mean	Values are group mid Distribution ✓ Skewness ✓ Kurtosis
Bemove Bemove Dispersion Std. deviation Minimum Variance Maximum Range S.E. mean I.quart. range I.qual. variation	Values are group mid Distribution ✓ Ske <u>w</u> ness ✓ Kurtosis

- Karena kita akan melihat ukuran distribusi dari variabel UAS maka pilih Skewness dan Kurtosis seperti gambar di atas ini.
- Klik **<Continue>**, kemudian klik **<OK>**. Setelah itu akan muncul luaran seperti gambar di bawah ini.

Descriptive Statistics Frequencies

Table: datasiswa Variable: Nilai UAS

N	30
DISTRIBUTION:	
Skewness	
Fisher-Pearson α3	-0,1964
Karl Pearson I α3	0,1198
Karl Pearson II α3	-0,1772
Bowley Quartile α3	0,3333
Bowley Percentile α3	0,0000
Skewness Moment α ₃	-2,6576
Kurtosis	
Fisher-Pearson α4	-0,7236
α4	2,0539
κ	0,3750

Ternyata kita dapat melihat bahwa penghitungan ukuran distribusi (*skewness* dan *kurtosis*) dari *UAS Statistika* dengan menggunakan rumus secara manual dan program Unpad SAS menunjukkan hasil yang sama.

5. Diagram

Diagram adalah penyajian simbolis atas informasi untuk memperlihatkan atau menerangkan suatu kelompok data. Ada beberapa model diagram yang sering digunakan, yaitu diagram garis, diagram batang, diagram lingkaran (*pie*), dan *histogram*.

Gambar 2.3: Contoh Diagram Batang

Diagram batang atau grafik batang adalah bagan atau grafik yang menyajikan data dalam bentuk batang (bilah persegi panjang) dengan tinggi atau panjang yang sebanding dengan nilai yang mereka wakili. Batang dapat diplot secara vertikal atau horizontal. Setiap batang mewakili suatu kategori tertentu dan tinggi atau panjang batang menyatakan frekuensi atau proporsi kategori tersebut. Unpad SAS menampilkan diagram batang secara vertikal, yaitu seperti ditunjukkan pada Gambar 2.3.

Descriptive Statistics

Frequencies

Table: datasiswa Variable: SAM

FREQUENCY:

SAM	Frequency	Percent	Valid Percent	Cummulative Percent
Rendah	10	33,3333	33,3333	33,3333
Sedang	13	43,3333	43,3333	76,6666
Tinggi	7	23,3333	23,3333	99,9999

Statistics N 30

PIE CHART:

Gambar 2.4: Contoh *Pi Chart* (Diagram Lingkaran)

Pie Chart (diagram lingkaran) adalah grafik statistik berupa lingkaran yang dibagi menjadi irisan-irisan untuk menggambarkan proporsi setiap kategori. Dalam diagram lingkaran, panjang busur masing-masing irisan sebanding dengan kuantitas yang diwakilinya. Diagram ini diberi nama seperti itu karena kemiripannya dengan *pie* yang telah diiris. Unpad SAS menampilkan diagram lingkaran dengan nama kategori dan proporsinya di sebelah kanan gambar tersebut, yaitu seperti ditunjukkan pada Gambar 2.4.

Descriptive Statistics

Frequencies

Table: datasiswa Variable: SATS

FREQUENCY:

SATS	Frequency	Percent	Valid Percent	Cummulative Percent
60	1	3,3333	3,3333	3,3333
65	1	3,3333	3,3333	6,6666
68	1	3,3333	3,3333	9,9999
70	1	3,3333	3,3333	<mark>13,333</mark> 2
80	4	13,3333	13,3333	26,6665
85	3	10,0000	10,0000	36,6665
86	1	3,3333	3,3333	39,9998
89	2	6,6667	6,6667	46,6665
90	3	10,0000	10,0000	56,6665
95	1	3,3333	3,3333	59,9998
97	1	3,3333	3,3333	63,3331
98	3	10,0000	10,0000	73,3331
100	3	10,0000	10,0000	83,3331
102	1	3,3333	3,3333	86,6664
105	1	3,3333	3,3333	89,9997
107	2	6,6667	6,6667	96,6664
110	1	3,3333	3,3333	99,9997

Statistics

N 30

Histogram diperkenalkan oleh Karl Pearson. Histogram mirip dengan diagram batang tetapi setiap batangnya merepresentasikan distribusi data secara lebih akurat, yaitu:

- Setiap batang histogram mewakili suatu kelas interval dari variabel tertentu.
- Setiap kelas interval memiliki lebar yang sama dan antar setiap batang tidak ada jarak (pemisah).
- Frekuensi setiap batang histogram merupakan jumlah frekuensi dari kategori yang berada di dalam kelas interval dari variabel tersebut.

Unpad SAS menampilkan histogram secara vertikal, yaitu seperti ditunjukkan pada Gambar 2.5.

Beberapa aturan yang digunakan untuk membuat histogram adalah sebagai berikut.

- Tetapkan nilai minimum (*Min*), maksimum (*Max*), dan hitung nilai rentang (*R*) dari variabel yang akan dibuatkan *histogram*-nya. Dalam contoh di atas, *Min* = 60, *Max* = 110, dan *R* = *Max Min* = 50.
- Jumlah kelas dihitung dengan menggunakan rumus
 k = 3,33 log(n) + 1

dimana *n* adalah jumlah data dan nilai *k* dibulatkan ke atas.

Dalam contoh di atas, n = 30 maka:

dibulatkan ke atas, k = 6.

Interval kelas dihitung dengan menggunakan rumus

$$I = \frac{R}{k-1}$$

dimana *R* adalah rentang-nilai *(range)* dari variabel yang dimaksud. Untuk contoh di atas, nilai interval kelas *(I)* adalah:

$$I = \frac{50}{6-1} = 10$$

 Setiap kelas interval memiliki batas-kelas. Untuk keperluan tersebut perlu ditetapkan dulu nilai satuan terkecil (tanpa diikuti angka 0) dari nilai variabel yang dimaksud.

Batas-bawah kelas interval dihitung berdasarkan rumus:

$$BK_i = Min + (i-1)I - \frac{nst}{2}$$

Untuk contoh di atas, nst adalah 1 maka batas-bawah masing-masing kelas interval adalah:

$$BK_{1} = 60 - 0,5 = 59,5$$

$$BK_{2} = 60 + 10 - 0,5 = 69,5$$

$$BK_{3} = 60 + 20 - 0,5 = 79,5$$

$$BK_{4} = 60 + 30 - 0,5 = 89,5$$

$$BK_{5} = 60 + 40 - 0,5 = 99,5$$

$$BK_{6} = 60 + 50 - 0,5 = 109,5$$

 Kecuali untuk kelas interval pertama, batas-bawah suatu kelas interval merupakan batas-atas dari kelas interval sebelumnya dan batas-atas untuk kelas interval terakhir adalah batas-bawah kelas tersebut ditambah interval kelas (1).

Gambar 2.6: Kotak Dialog *Frequencies-Chart*

Luaran diagram dalam bentuk *bar chart, pie chart,* atau *histogram* dapat ditampilkan melalui perintah *Analyze->Descriptive Statistics->Fre-quencies* dengan memilih tombol *Chart.* Perintah tersebut akan menampilkan kotak dialog *Frequencies: Charts* seperti ditunjukkan pada Gambar 2.6. Pilih tipe diagram yang Anda inginkan dan klik tombol <Continue>.

C. DESCRIPTIVES

Modul *Descriptives* menyediakan ringkasan statistik untuk variabel yang berbentuk numerik kontinu. Ringkasan yang ditampilkan antara lain berupa ukuran gejala pusat, ukuran dispersi, dan ukuran distribusi. Selain itu, kita juga dapat menyimpan skor *Z* dari suatu distribusi data. Skor *Z* atau yang biasa disebut *standard score* merupakan nilai relatif skor terhadap *mean* (seberapa jauh dia berada di atas atau di bawah rata-rata dalam satuan simpangan baku). Biasanya *standard score* kita gunakan ketika kita akan membandingkan skor yang berasal dari populasi yang berbeda.

Contoh 3.2:

Data yang digunakan sama dengan contoh sebelumnya. Namun, kali ini kita akan mengerjakan penghitungan dengan menggunakan menu **Descriptives**.

Masalah 1:

Peneliti ingin mengetahui ukuran gejala pusat, ukuran dispersi, dan ukuran distribusi dari variabel Nilai.

Berikut adalah langkah-langkah penghitungan dengan Unpad SAS.

- Buka file *data_mahasiswa*.
- Pilih perintah Analyze->Descriptive Statistics->Descriptives
- Pilih variabel *Nilai UAS* seperti pada gambar di bawah ini.

		Variable(s):		
Nilai UTS [UTS] ([Q] (STATS] (SAM) Jenis Kelamin [J	K]	Milai U	AS [UAS]	Option
Save standardize	su values as valia	Dies		
	Constant I	I	Count	Holo

• Untuk memilih ukuran statistik, maka Klik Option ...

/ Mean	Sum
Dispersion	
${\color{black}\!$	🔲 Mjnimum
∏ <u>V</u> ariance	🔲 Maximum
🥅 Range	🔲 S. <u>E</u> . mean
🔲 I.quart. range	🔲 I.gual. variation
🔲 S.I.quart. range	9
Distribution	
✓ Kurtosis	⊽ Ske <u>w</u> ness
Display Order	
 Variable list 	
C Alphabetic	
C Ascending mea	ans
C. Descending m	eans

- Pilih Mean, Std.Deviation, dan Skewness serta Kurtosis seperti gambar di atas.
- Klik **Continue**, kemudian klik **OK**. Setelah itu akan muncul luaran seperti gambar di bawah ini.

Variable: Nilai UAS	
Statistics	
DISPERSION:	
Std.Deviation	8,3460
Variance	69,6552
CENTRAL TENDENCY	/:
Mean	66,0000
DISTRIBUTION:	
Skewness	
Fisher-Pearson α3	-0,1964
Karl Pearson I α3	0,1198
Karl Pearson II α3	-0,1772
Bowley Quartile α ₃	0,3333
Bowley Percentile α ₃	0,0000
α3	-2,6576
Kurtosis	
Fisher-Pearson α4	-0,7236
α4	2,0539
	0 2750

Descriptive Statistics

Hasil yang diperoleh dari penghitungan menggunakan *Descriptives* sama seperti hasil penghitungan pada contoh 3.1 Masalah 2.

Standard Score

Seperti telah dijelaskan, salah satu fungsi dari *descriptives* adalah untuk menyimpan skor *Z* atau *standard score* dari suatu distribusi data. *Standard score* memiliki dua rumus.

Rumus pertama digunakan jika data merupakan sampel:

$$z = \frac{x - \bar{x}}{s}$$

dimana:

- z = nilai standar sampel
- *x* = nilai pada sampel
- \bar{x} = rata-rata sampel
- *s* = simpangan baku sampel

Rumus kedua digunakan jika data merupakan populasi:

$$z = \frac{x - \mu}{\sigma}$$

dimana: z = nilai standar sampel x = nilai pada populasi μ = rata-rata populasi σ = simpangan baku populasi

Penggunaan rata-rata dan simpangan baku secara bersama-sama merupakan cara efisien untuk menggambarkan suatu distribusi data dan memungkinkan untuk melakukan perbandingan secara langsung antara distribusi yang mempunya skala yang berbeda. Sebagai contoh jika kita mengkur panjang benda dengan satuan meter, hasil pengukuran meaningful. Panjang benda yang diperoleh akan sama kalau kita menggunakan meteran yang mana pun dan kita memiliki pemahaman yang sama mengenai panjang benda tersebut.

Dalam pengukuran psikologis, tidak ada unit pengukuran yang standar mengenai *raw scores* (skor mentah). Tidak seperti mengukur panjang benda, alat pengukuran kecerdasan yang digunakan akan berbeda antara satu orang dengan orang yang lain. Dalam hal ini *Z score* dapat digunakan untuk membandingkan skor yang berasal dari unit pengukuran yang berbeda.

Z score atau standar skor menggambarkan posisi skor terhadap skor kelompoknya, apakah di atas atau di bawah rata-rata dan berapa jauh di atas dan di bawah rata-rata tersebut. Suatu standar skor menyatakan posisi skor dalam hubungan dengan rata-rata distribusi, dengan menggunakan simpangan baku sebagai unit pengukuran, berapa simpangan baku di atas atau di bawah rata-rata.

Misalkan skor tes numerikal anda adalah 60 dan skor tes verbal adalah 30. Dalam tes yang mana anda mempunyai kemampuan yang lebih baik?

- Pertama, kita membutuhkan nilai tes dari orang-orang lain pada tes tersebut. Misalkan rata-rata skor tes numerikal adalah 50 dan rata-rata skor tes verbal adalah 20.
- Skor anda 10 poin di atas skor rata-rata kelompok.

BELAJAR STATISTIKA DENGAN UNPAD SAS

- Dapatkah dikatakan bahwa anda mempunyai kemampuan yang sama pada kedua tes tersebut?
- Tidak tahu, karena kita tidak tahu apakah 10 poin pada tes numerikal sama dengan 10 poin pada tes verbal

Misalkan skor tes numerikal anda adalah 60 dan skor tes verbal adalah 30. Dalam tes yang mana anda mempunyai kemampuan yang lebih baik?

- Misalkan simpangan baku tes numerikal adalah 15 dan simpangan baku tes verbal adalah 5.
- Apakah sekarang dapat ditentukan pada tes yang mana anda mempunyai kemampuan yang lebih baik?

Untuk mencari berapa simpangan baku suatu skor berjarak dari rataratanya, digunakan rumus *Z*:

Z untuk tes numerikal:

$$z = \frac{60 - 50}{15} = 0,667$$

Z untuk tes verbal:

$$z = \frac{30 - 20}{5} = 2$$

Maka nilai skor tes verbal lebih baik dari skor tes numerikal.

Distribusi Skor Numerical Test dan verbal Test

Z akan mempunyai rata-rata = 0 dan simpangan baku =1.

Transformasi skor mentah ke Z akan mengubah rata-rata menjadi 0 dan simpangan baku 1, akan tetapi tidak akan mengubah bentuk distribusi.

Pada Masalah 2 berikut ini kita akan melakukan perhitungan Z.

Masalah 2:

Adi adalah peserta dalam penelitian ini yang mempunyai nilai *UAS* 70 dan nilai *UTS* 85 (Responden 18). Apakah dapat disimpulkan bahwa Adi mempunyai nilai *UTS* yang lebih baik dibandingkan nilai *UAS*?

Perhitungan manual Z-Score

Z untuk UAS

$$z = \frac{70 - 66}{8,3460}$$

$$z = 0,4792$$

$$Z \text{ untuk } UTS$$

$$z = \frac{85 - 80}{8,3045}$$

$$z = 0,6020$$

Maka nilai UAS Adi lebih baik dari nilai UTS nya

Perhitungan Z-Score dengan Unpad SAS

- Buka tabel *data_mahasiswa*.
- Berikan perintah Analyze->Descriptive Statistics->Descriptives
- Pilih variabel *UAS* dan *UTS* seperti pada gambar di bawah ini.

Jescriptives		Variable(s):	-	
✔ [IQ] ↓↓ [STATS] ↓↓ [SAM] & Jenis Kelamin [J	IK] III)	Milai U	AS [UAS] TS [UTS]	Option
Save standardize	ed values as varia	ibles		
	Pasta	Beset	Cancel	Help

- Contreng "save standardized value as variables" seperti pada gambar di atas.
- Untuk memilih ukuran statistik, maka Klik Option ...
- Pilih saja sesuai keperluan, misalnya **Mean** dan **Std. Deviation**.

BELAJAR STATISTIKA DENGAN UNPAD SAS

• Mean	🖵 Sum
Dispersion	
▼ Std. deviation	🔲 Mjnimum
∏ <u>V</u> ariance	🗖 Masimum
🔲 Ra <u>n</u> ge	🔲 S. <u>E</u> . mean
🔲 I.quart. range	🔲 I.gual. variation
🔲 S.I.quart. range	ı
Distribution	
<u> </u>	∏ Ske <u>w</u> ness
Display Order	
 Variable list 	
C Alphabetic	
C Ascending mea	ins
C Descending me	eans

• Klik <Continue>, kemudian klik <OK>. Setelah itu akan muncul luaran seperti gambar di bawah ini.

Descriptiv	e Statisti	CS
Descriptive		
Table: datasis Variable: Nilai Statistics	wa i UAS	
DISPERSION:	8	
Std.Deviation	8,3460	
Variance	69,6552	
CENTRAL TE	NDENCY:	
	Contraction of the second	

 Perhatikan pada *DataView* Anda, sekarang telah muncul variabel baru, yaitu *zUAS* dan *zUTS* yang merupakan *standard score* dari Nilai *UAS* dan Nilai *UTS*.

STATISTIK DESKRIPTIF

ID	UAS	UTS	IQ	STATS	SAM	JK	zUAS	zUTS
1	50	70	118	68	3	1	-1.91709351	-1.20415946
2	: 50	70	110	65	2	1	-1.91709351	-1.20415946
3	55	75	113	60	3	1	-1.31800179	-0.60207973
4	55	75	110	70	3	1	-1.31800179	-0.60207973
5	i 55	70	113	86	2	1	-1.31800179	-1.20415946
6	60	75	118	89	2	1	-0.71891007	-0.60207973
7	60	70	123	90	2	1	-0.71891007	-1.20415946
8	60	70	121	80	3	1	-0.71891007	-1.20415946
9	60	70	116	98	2	1	-0.71891007	-1.20415946
10	60	80	119	97	1	1	-0.71891007	C
11	65	80	116	89	1	1	-0.11981834	C
12	. 65	85	119	85	3	1	-0.11981834	0.60207973
13	65	85	116	95	3	1	-0.11981834	0.60207973
14	65	85	123	100	1	1	-0.11981834	0.60207973
15	i 65	80	125	100	3	1	-0.11981834	C
16	65	75	110	98	2	1	-0.11981834	-0.60207973
17	65	80	113	90	2	1	-0.11981834	C
18	70	85	123	80	1	1	0.47927338	0.60207973
19	70	90	120	102	2	1	0.47927338	1.20415946
20	70	90	126	107	1	1	0.47927338	1.20415946
21	70	70	118	98	1	2	0.47927338	-1.20415946
22	. 70	70	126	90	2	2	0.47927338	-1.20415946
23	75	75	120	80	2	2	1.0783651	-0.60207973

D. EXPLORE

Explore digunakan untuk memeriksa lebih teliti mengenai sekelompok data. Banyak fungsi yang bisa dimanfaatkan dari bagian ini, misalnya untuk melakukan *data screening* (seperti melihat angka yang tidak lazim, nilai yang terlalu ekstrim, perbedaan di antara data).

Boxplot merupakan salah satu fitur yang terdapat pada perintah *explore. Boxplot* adalah cara untuk menampilkan distribusi data berdasarkan lima acuan, yaitu: minimum, kuartil satu, median, kuartil tiga, dan maksimum. Melalui *boxplot*, kita juga dapat melihat data yang bersifat ekstrim, baik terlalu tinggi, maupun terlalu rendah. Data tersebut termasuk pada kategori *outlier*.

Contoh 3.4:

Dalam contoh ini kita akan mengerjakan kembali contoh mengenai variabel *Nilai*. Kali ini, dengan menggunakan *Explore* kita akan melihat apakah terdapat data-data ekstrim atau keliru, melihat distribusi data, ringkasan statistik.

Berikut ini adalah langkah-langkah pengerjaan dengan Unpad SAS.

- Buka berkas *data_mahasiswa*.
- Pilih Analyze->Descriptive Statistics->Explore..
- Pilih variabel *Nilai UAS* seperti pada gambar di bawah ini.

		Variable(s):	
🖗 [IQ]		🖉 🔊 Nilai UAS [UAS]	Statistic
			Plot
[zUAS]		Factor List:	0
👖 [zUTS]			— Uption
Masure rurei			
		Label Cases by:	
	- W)>		
Dieplau		3	_
C Both C Statistics			
- Dom - Didustics	+ i iuts	*	

• Klik <Continue>, kemudian klik <OK>. Setelah itu akan muncul luaran seperti gambar di bawah ini.

Descriptive Statistics

Explore

Table: datasiswa Variable: Nilai UAS

BOX PLOT	
MIN	50,0000
MAX	80,0000
LQ	60,0000
MQ	65,0000
UQ	75,0000
IR	15,0000
LIF	37,5000
UIF	97,5000
LIF2	15,0000
UIF2	120,0000

Dari *box plot* tersebut dapat diketahui bahwa:

- 1. Nilai terkecil distribusi (MIN)= 50
- 2. Nilai terbesardistribusi (MAX)= 80
- 3. Kuartil bawah (LQ)= 60
- 4. Median (*MQ*)= 65
- 5. Kuartil atas (UQ)=75
- 6. Interquartile range (IR)= 15
- 7. Nilai-nilai Inner fence
 - a. Lower Inner Fence (*LIF*)= 37,5 LIF = LQ-1,5*IR
 - b. UpperInner Fence (UIF)= 97,5 UIF = UQ+ 1,5*IR
 - c. Lower Outer Fence (LIF2)= 15 LIF2 = LQ-3*IR
 - d. Upper Outer Fence (UIF2)= 120 UIF2 = UQ+ 3*IR

Nilai-nilai yang berada di luar kedua sisi *inner fence* merupakan *mild outlier*. Nilai-nilai yang berada di luar kedua sisi *outer fence* merupakan *extreme outlier*.

E. CROSSTABS

Crosstabs digunakan untuk menyajikan deskripsi data kategorikal dalam bentuk tabulasi silang *(crosstab)*, yang terdiri atas baris dan kolom. *Crosstabs* merupakan tabel kontingensi yang digunakan untuk mengukur hubungan antara dua variabel.

Contoh 3.5:

Pihak fakultas ingin melihat gambaran *Nilai UAS* Statistika pada mahasiswa laki-laki dan perempuan dalam bentuk tabulasi silang.

Berikut ini adalah langkah-langkah pengerjaan dengan Unpad SAS.

- Buka berkas *data_mahasiswa*.
- Pilih Analyze ->Descriptive Statistics->Crosstabs

		Row(s):	
[IQ] [SAM]		🕨 🚴 Jenis Kel	amin [JK]
		, Column(s):	
II [zUTS]	1	Nilai UAS	i [UAS]
	La	ayer1 of 1	
		Previous	Next
Display clustered	d bar charts	1	
Suppress tables			
Ok	Reset	Cancel	Help

- Pada Row(s), masukkan variabel JenisKelamin (JK). Pada Column (s), masukkan variabel Nilai UAS.
- Klik tombol <OK>. Setelah itu akan muncul luaran seperti gambar di bawah ini.

Descriptive	e St	atis	tics					
Crosstab								
Fable: <mark>datasisw</mark> Variables: JK, U	a AS							
Crosstab								
Crosstab			Ni	ilai U/	AS			T-4-1
Crosstab Jenis Kelamin	[50]	[55]	Ni [60]	ilai U/ [65]	4S [70]	[75]	[80]	Total
Crosstab Jenis Kelamin Laki-laki	[50] 2	[55] 3	Ni [60] 5	ilai U/ [65] 7	AS [70] 3	[75] 0	[80] 0	Total
Crosstab Jenis Kelamin Laki-laki Perempuan	[50] 2 0	[55] 3 0	Ni [60] 5 0	ilai U/ [65] 7 0	AS [70] 3 2	[75] 0 6	[80] 0 2	Total 20 10

Anda boleh menetapkan beberapa variabel ke dalam ruas *Row(s)* maupun *Column (s)* untuk mendapatkan beberapa tabel-silang secara sekaligus. Sebagai contoh, ikuti langkah-langkah berikut.

- Buka berkas data_mahasiswa.
- Pilih Analyze ->Descriptive Statistics->Crosstabs

[IQ] [ZUAS]		Bow(s): Jenis Kelamin [JK] Nilai UAS [UAS]	
👖 [2015] 🖉 Milsi HTS (11TS)		, Column(s):	
	L.	ayer 1 of 1	
		Previous Next	
Display clustered	bar charts		
Suppress tables			
Ok	Reset	Cancel Help	

- Pada Row(s), masukkan variabel JK dan Nilai. Pada Column (s), masukkan variabel SAM dan STATS.
- Klik tombol <OK>. Setelah itu akan muncul luaran seperti gambar di bawah ini.

Descriptive Statistics

Crosstab

Table: datasiswa Variables: JK, SATS

Crosstab

Inter Walkerster					SATS													
Jenis Kelamin	60	65	68	70	80	85	86	89	90	95	97	98	100	102	105	107	110	Total
Laki-laki	1	1	1	1	2	1	1	2	2	1	1	2	2	1	0	1	0	20
Perempuan	0	0	0	0	2	2	0	0	1	0	0	1	1	0	1	1	1	10
Total	1	1	1	1	4	3	1	2	3	1	1	3	3	1	1	2	1	30

Variables: JK, SAM

Crosstab

Innia Kalamin		SAM								
jenis Kelamin	Rendah	Sedang	Tinggi	Total						
Laki-laki	5	8	7	20						
Perempuan	5	5	0	10						
Total	10	13	7	30						

Variables: UAS, SATS

Crosstab

NUL-I HAC	SATS													Total				
NIIAI UAS	60	65	68	70	80	85	86	89	90	95	97	98	100	102	105	107	110	Total
[50]	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
[55]	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	3
[60]	0	0	0	0	1	0	0	1	1	0	1	1	0	0	0	0	0	5
[65]	0	0	0	0	0	1	0	1	1	1	0	1	2	0	0	0	0	7
[70]	0	0	0	0	1	0	0	0	1	0	0	1	0	1	0	1	0	5
[75]	0	0	0	0	2	2	0	0	0	0	0	0	1	0	1	0	0	6
[80]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2
Total	1	1	1	1	4	3	1	2	3	1	1	3	3	1	1	2	1	30

Variables: UAS, SAM

NIL ILAC		SAM									
MIAI UAS	Rendah	Sedang	Tinggi	Total							
[50]	0	1	1	2							
[55]	0	1	2	3							
[60]	1	3	1	5							
[65]	2	2	3	7							
[70]	3	2	0	5							
[75]	3	3	0	6							
[80]	1	1	0	2							
Total	10	13	7	30							

F. LATIHAN

Soal 1:

Berikut ini adalah daftar permintaan lanjutan dari Fakultas. Silahkan dicermati dan dikerjakan sesuai dengan petunjuk yang diberikan.

- 1. Pihak Fakultas ingin memperoleh ringkasan statistik secara lengkap mengenai ukuran gejala pusat, ukuran letak, ukuran dispersi, dan ukuran distribusi dari variabel *UTS* dan *IQ* pada data tersebut.
- 2. Pihak Fakultas juga ingin Anda menghitung standard score dari IQ.
- **3.** Kemudian, pihak Fakultas ingin Anda melihat gambaran *Statistics Anxiety Measure* (*SAM*) pada mahasiswa laki-laki dan perempuan dalam bentuk tabulasi silang.

Soal 2:

Suatu penelitian dilakukan untuk mengetahui perbedaan hasil belajar siswa yang belajar Matematika dengan tiga metode yang berbeda. Kelompok pertama adalah kelompok yang belajar Matematika dengan menggunakan metode SCL *(Student Centered Learning)*. Kelompok kedua adalah kelompok yang belajar Matematika dengan menggunakan metode TCL *(Teacher Centered Learning)*. Adapun kelompok ketiga adalah kelompok yang belajar Matematika menggunakan metode gabungan SCL dan TCL.

Hasil belajar Matematika pada ketiga kelompok tersebut dapat dilihat pada tabel di bawah ini:

SCL	TCL	SCL + TCL	SCL	TCL	SCL + TCL
85	75	98	63	84	87
64	65	76	75	76	89

BELAJAR STATISTIKA DENGAN UNPAD SAS

SCL	TCL	SCL + TCL	SCL	TCL	SCL + TCL
65	78	87	83	77	84
78	56	78	65	64	81
82	76	78	82	71	98
75	56	75	65	67	77
83	74	85	76	65	87
65	66	65	77	63	90
84	64	78	88	75	87
76	55	71	88	87	91
84	54	82	67	76	82
94	54	76	74	79	96
73	64	84	75	76	87
61	73	78	77	87	88
64	84	86	84	77	90

Jika peneliti mengkategorikan Hasil Belajar Matematika menjadi 2 kategori: Tinggi: untuk Hasil Belajar Matematika yang nilainya 25% tertinggi Rendah: untuk Hasil Belajar Matematika yang nilainya 25% terrendah

- a. Berapakah batas minimal Hasil Belajar Matematika untuk dikategorikan menjadi tinggi?
- b. Berapakah batas maksimal Hasil Belajar Matematika untuk dikategorikan menjadi rendah?
- c. Ada berapa siswa yang mempunyai Hasil Belajar Matematika dengan kategori rendah?
- d. Ada berapa siswa yang mempunyai Hasil Belajar Matematika dengan kategori tinggi?

Soal 3:

Hasil Tes masuk pada Ujian Masuk ke Program Magister Fakultas Psikologi di suatu Universitas di kota Bandung adalah sebagai berikut:

678	688	653	691	700	712	700	674
670	676	688	716	676	658	662	680
690	676	689	692	700	702	721	670

- a. Bagaimana bentuk hubungan antara rata-rata, median dan modus serta bentuk distribusi dari data tersebut?
- b. Gambarkan *boxplot* dari data tersebut, apakah terdapat data *outlier* (ekstrim dan sangat ekstrim)?
- c. Nilai-nilai apa yang paling tepat digunakan sebagai suatu ukuran untuk menggambarkan data tersebut? Berapa besarnya nilai-nilai tersebut?

Soal 4:

Data di bawah ini adalah data mengenai hasil pengukuran intelegensi dengan menggunakan alat tes *IST* pada berbagai kelompok usia:

No	Pendidikan	Jenis Kelamin/Pekerjaan	Rata-rata IQ	Simpangan Baku IQ
1	SLA	Laki-laki	119	18.5
2	SLA	Perempuan	122	15.7
3	Sarjana	Laki-laki	120	17.3
4	Sarjana	Perempuan	116	15.0

Berdasarkan data tersebut, hitunglah:

- a. Berapa nilai tertinggi dari 25% nilai *IQ* yang terendah untuk masingmasing kelompok tersebut!
- b. Berapa nilai yang terendah dari 25% nilai yang tertinggi untuk masingmasing kelompok tersebut!
- c. Berapa nilai median untuk masing-masing kelompok tersebut!
- d. Apa yang dapat Saudara simpulkan dari hasil perhitungan tersebut!

3 Sampling

A. PENDAHULUAN

Dalam suatu penelitian, hampir jarang dilakukan penelitian dengan mengambil seluruh unit analisis yang ada dalam populasi. Pada umumnya penelitian dilakukan pada sebagian unit analisis yang ada dalam populasi (sampel). Penelitian dengan menggunakan sampel biasanya dilakukan karena:

- Tidak mungkin melakukan penelitian pada seluruh anggota populasi
- Mengurangi bias
- Masalah waktu dan biaya
- Penelitian yang sifatnya merusak
- Feasibility

Akan tetapi walaupun penelitian dilakukan pada sampel, sampel yang diambil harus representatif dan menggambarkan keadaan populasi. Oleh karena itu pengambilan sampel membutuhkan suatu teknik tertentu yang harus diikuti oleh peneliti agar memberikan hasil penelitian yang baik. Sebelum dibahas mengenai berbagai teknik sampling, akan dibahas dulu beberapa pengertian dasar dalam teknik sampling.

Beberapa pengertian dasar dalam teknik sampling:

- Karakteristik: ciri/keadaan yang akan diperiksa/dipelajari
- Unit analisis: sesuatu yang berdasarkan tujuannya atau berdasar peraturan tertentu dijadikan sebuah kesatuan yang karakteristiknya akan diukur
- **Populasi**: keseluruhan unit analisis/hasil pengukuran yang dibatasi oleh suatu kriteria tertentu
- Populasi sasaran: populasi yang akan diteliti. Seorang peneliti menyimpulkan hasil penelitiannya hanya berlaku untuk populasi sasaran yang ia tetapkan.

- **Sampling**: sebuah prosedur/cara untuk memilih sebagian unit yang ada dalam populasi
- **Sampel**: sebagian unit analisis dalam populasi yang diperoleh melalui sampling tertentu
- **Kerangka sampling**: daftar yang berisi semua unit analisis yang ada dalam populasi

Dilihat dari peluang (probability) pemilihannya, sampling terdiri dari:

 Sampling non peluang (sampling tidak acak): Dalam sampling non peluang, proses pemilihan unit analisis yang masuk ke dalam sampel sangat sederhana, tetapi kesederhanaan ini harus dibayar mahal sebab terhadap data yang dikumpulkan melalui sampling non peluang, analisis statistik yang menyangkut *test of significant* tidak diperkenankan, karena *test of significant* melibatkan peluang (α), padahal samplingnya tidak melibatkan peluang.

Jenis-jenis sampling non peluang:

- a. Haphazard sampling/Accidental sampling
- b. Voluntary sampling
- c. Judgment sampling/Purposive sampling/Expert choice
- d. Snowball sampling
- e. Quota sampling
- 2. Sampling peluang (sampling acak):

Pada sampling peluang peneliti sangat memperhatikan unsur peluang saat melakukan pemilihan unit analisis yang masuk ke dalam sampel, dimana peluang unit analisis terpilih ke dalam sampel $\neq 0$.

Jenis-jenis sampling peluang:

- a. Sampling acak sederhana (simple random sampling)
- b. Sampling sistematik (systematic sampling)
- c. Sampling stratifikasi (stratified sampling)
- d. Sampling klaster (cluster sampling)

B. SAMPLING ACAK SEDERHANA (SIMPLE RANDOM SAMPLING)

Sampling acak sederhana adalah proses sampling yang memenuhi persyaratan bahwa setiap unit analisis yang ada dalam populasi mempunyai

peluang yang sama besar untuk terpilih ke dalam sampel. Jika ukuran populasi N, maka setiap unit populasi mempunyai peluang 1/N untuk terpilih ke dalam sampel.

Sampling acak sederhana merupakan dasar dari sampling-sampling lainnya, tetapi penggunaannya terbatas sekali, terutama dalam penelitian survey yang ruang lingkupnya luas. Sampling acak sederhana dapat digunakan jika peneliti berhadapan dengan populasi yang relatif homogen dan kerangka sampling harus lengkap dan tersedia.

Dalam sampling acak sederhana, proses sampling dilakukan dengan tahapan:

- 1. Tentukan ukuran sampel
- 2. Ambil kerangka sampling
- 3. Lakukan proses pengacakan dengan menggunakan undian, tabel bilangan acak atau random generator dalam Unpad SAS, untuk memilih unit analisis yang masuk ke dalam sampel

Gambar 3.1: Proses Sampling Acak Sederhana

BELAJAR STATISTIKA DENGAN UNPAD SAS

Tabel Bilangan Acak								
1	2	3	4	5				
49486	93775	88744	80091	92732				
94860	36746	04571	13150	65383				
10169	95685	47585	53247	60900				
12018	45351	15671	23026	55344				
45611	71585	61487	87434	07498				
89137	30984	18842	69619	53872				
94541	12057	30771	19598	96069				
89920	28843	87599	30181	26839				
32472	32796	15255	39636	90819				

Tabel 3.1

1. Penghitungan Ukuran Sampel Minimal untuk Estimasi Rata-**Rata pada Sampling Acak Sederhana**

Penghitungan ukuran sampel minimal untuk sampling acak sederhana dapat dilakukan menggunakan rumus:

$$n = \frac{N\sigma^2}{(N-1)D + \sigma^2}$$

dimana:

 $D = B^2/4$

B = bound of error

 σ = simpangan baku populasi untuk variabel yang rata-ratanya akan ditaksir

Rumus di atas mengandung sebuah parameter σ , padahal σ hanya dapat diketahui apabila dilakukan sensus. Dalam praktek nilai σ dapat diperoleh dari:

- 1. Atas dasar hasil sensus yang telah dilakukan
- 2. Pendapat/pertimbangan pakar (*expert judgement*)
- 3. Penelitian pendahuluan
- 4. Gunakan aturan empirik yang diberikan oleh Edward Demins, yang mengatakan adanya hubungan antara besarnya rentang (range) dengan simpangan baku suatu variabel
 - a. Jika variabel X berdistribusi simetri, maka hubungan antara rentang dengan simpangan baku adalah : $\sigma \approx 0.24$ R
 - b. Jika variabel X berdistribusi miring (positif maupun negatif), maka hubungan antara rentang dengan simpangan baku adalah : $\sigma \approx 0.21$ R

c. Jika variabel *X* berdistribusi *uniform*, maka hubungan antara rentang dengan simpangan baku adalah : $\sigma \approx 0.29$ R

Contoh Masalah

Suatu penelitian dilakukan oleh PT Asuransi Garuda untuk mengestimasi rata-rata besar asuransi kesehatan yang dikeluarkan suatu keluarga. Data terdahulu yang ada menunjukkan bahwa besar asuransi kesehatan yang dikeluarkan sangat beragam dengan rentang *(range)* = 100 juta rupiah. Apabila populasi penelitian ada 1.000 orang, berapa besar sampel minimal yang diperlukan untuk melakukan penelitian ini apabila diambil bound of error = 3 juta rupiah?

Pengerjaan Secara Manual

Soal ini akan diselesaikan dengan menggunakan rumus ukuran sampel minimal untuk estimasi rata-rata pada sampling acak sederhana. Untuk menyelesaikan soal ini dibutuhkan nilai varians (σ^2). Karena tidak ada informasi apapun, maka nilai simpangan baku akan diambil 0,24 R = 0,24 (100) = 24.

 $n = \frac{1000 * 24^2}{(1000 - 1) * 2,25 + 24^2}$ n = 203,98

Jadi ukuran sampel minimal yang harus diambil dalam penelitian ini adalah 204 orang.

Pengerjaan dengan Menggunakan UNPAD SAS

 Pilih menu Analyze->Sampling->Simple Random Sampling->Sample Size Required to Estimate Mean.

<u>Analyze</u> <u>H</u> elp				
<u>D</u> escriptive Statistics <u>C</u> orrelate <u>N</u> onparametric Tests)))			
Sampling	•	Simple Random Sampling	×	Sample Size Required to Estimate Mean
		S <u>t</u> ratified Sampling <u>C</u> lustered Sampling S <u>v</u> stematic Sampling <u>R</u> andom Generator	;	Sample Size Required to Estimate Proportion Sample Size Required to Estimate Correlati

Population size N =	Calc
Standard deviation $\sigma =$	Copy to clipboard
Bound of error B =	
Sample size n =	

Perintah tersebut akan menampilkan kotak dialog sebagai berikut.

Masukkan 1000 untuk ruas *Population size* (N), 24 untuk ruas *Deviation Standard* (σ), dan 3 untuk ruas *Bound of error* (B). Setelah itu klik tombol <Calc>.

Population size N =	1000	Calc
Standard deviation $\sigma =$	24	Copy to clipboard
Bound of error B =	3	
Sample size n =	204	

Hasil perhitungan ukuran sampel akan ditampilkan di dalam ruas *Sample size* (*n*), yaitu 204.

 Klik <Copy to clipboard> untuk menyalin nilai-nilai tersebut sehingga Anda dapat menempelkannya ke dalam dokumen lain..

2. Penghitungan Ukuran Sampel Minimal untuk Estimasi Proporsi pada Sampling Acak Sederhana

Penghitungan ukuran sampel minimal untuk estimasi proporsi pada sampling acak sederhana dapat dilakukan menggunakan rumus:

$$n = \frac{Npq}{(N-1)D + pq}$$

dimana:

 $D = B^2/4$ p = besarnya perkiraan proporsi yang akan ditaksir B = bound of error

Apabila p tidak diketahui berdasarkan penelitian sebelumnya ataupun pendapat pakar, maka p diambil sama dengan 0.5.

Contoh Masalah

Suatu universitas sedang mengusulkan kode etik bagi mahasiswanya. Senat di universitas tersebut ingin melakukan survey untuk mengetahui persentase mahasiswa yang mendukung kode etik tersebut. Ada 2.000 mahasiswa di universitas ini. Melakukan wawancara terhadap seluruh mahasiswa akan memakan waktu yang sangat lama, oleh karena itu akan dipilih sejumlah mahasiswa yang menjadi sampel penelitian survey ini. Berapa ukuran sampel yang dibutuhkan apabila diinginkan bound of error = 0,05?

Pengerjaan Secara Manual

Untuk menyelesaikan soal ini dibutuhkan nilai p. Karena tidak ada informasi apapun, maka nilai p akan diambil 0,5.

$$n = \frac{2000 * 0.5 * 0.5}{(2000 - 1) * 0.000625 + 0.5 * 0.5}$$
$$n = \frac{500}{1.499375}$$
$$n = 333.47228$$

Jadi ukuran sampel minimal yang harus diambil dalam penelitian ini adalah 334 orang.

Pengerjaan dengan Menggunakan Unpad SAS

 Pilih menu Analyze->Sampling->Simple Random Sampling->Sample Size Required to Estimate Proportion.

<u>Analyze</u> <u>H</u> elp				
<u>D</u> escriptive Statistics <u>C</u> orrelate <u>N</u> onparametric Tests))			
Sampling	•	Simple Random Sampling	•	Sample Size Required to Estimate Mean
		Stratified Sampling	۰,	Sample Size Required to Estimate Proportio
		<u>C</u> lustered Sampling Systematic Sampling <u>R</u> andom Generator	• •	Sample Size Required to Estimate Correlatio

Perintah tersebut akan menampilkan kotak dialog sebagai berikut.
BELAJAR STATISTIKA DENGAN UNPAD SAS

Random Sampling: Sample Size Require to Est	imate Proportion
Population size N =	Calc
Proportion p =	Copy to clipboard
Bound of error B =	
Sample size n =	
Authors: Ratna Jatnika & Mustofa Haffas	Version 1.2.2.6

Masukkan 2000 untuk ruas *Population size (N)*, 0,5 untuk ruas *Proportion (p)*, dan 0,05 untuk ruas *Bound of error (B)*. Setelah itu klik tombol <Calc>.

Population size N =	2000	Calc
Proportion p =	0,5	Copy to clipboard
Bound of error B =	0,05	
Sample size n =	334	

Hasil perhitungan ukuran sampel akan ditampilkan di dalam ruas *Sample size (n)*, yaitu 334.

 Klik <Copy to clipboard> untuk menyalin nilai-nilai tersebut sehingga Anda dapat menempelkannya ke dalam dokumen lain..

3. Penghitungan Ukuran Sampel Minimal untuk Estimasi Korelasi dan Regresi pada Sampling Acak Sederhana

Penghitungan ukuran sampel minimal untuk sampling acak sederhana dapat dilakukan menggunakan rumus:

$$n = \frac{(Z_{1-\alpha} + Z_{1-\beta})^2}{(U_{\rho})^2} + 3$$
$$U_{\rho} = 0.5 \ ln\left(\frac{1+\rho}{1-\rho}\right)$$

dimana:

ρ = besarnya koefisien korelasi

Apabila besarnya koefisien korelasi tidak diketahui, maka dapat diambil $\rho = 0.5$.

Contoh Masalah

Suatu penelitian akan dilakukan untuk mengetahui hubungan antara tingkat kecerdasan dengan prestasi belajar mahasiswa di suatu perguruan tinggi. Data tahun sebelumnya menunjukkan bahwa besarnya hubungan antara tingkat kecerdasan dengan prestasi belajar mahasiswa adalah 0,40. Berapa ukuran sampel yang harus diambil untuk melakukan penelitian ini jika diambil taraf nyata = 0,05?

Pengerjaan Secara Manual

$$n = \frac{(1,645 + 1,645)^2}{\{0,5 \ln \frac{1,4}{0,6}\}^2} + 3$$
$$n = 63$$

Pengerjaan dengan Menggunakan Unpad SAS

 Pilih menu Analyze->Sampling->Simple Random Sampling->Sample Size Required to Estimate Correlation and Regression.

Perintah tersebut akan menampilkan kotak dialog sebagai berikut.

Correlation p =	Calc
Type 1 error α =	Copy to clipboard
Type 2 error $\beta =$	
Sample size n =	

 Masukkan 0,4 untuk ruas *Correlation* (ρ), 0,05 untuk ruas *Type 1 error* (α), dan 0,05 untuk ruas *Type 2 error* (β). Setelah itu klik tombol <Calc>. BELAJAR STATISTIKA DENGAN UNPAD SAS

Correlation $\rho =$	0,4	Calc
Type 1 error o. =	0,05	Copy to clipboard
Type 2 error $\beta =$	0,05	
Sample size n =	63	

Hasil perhitungan ukuran sampel akan ditampilkan di dalam ruas *Sample size* (*n*), yaitu 63.

 Klik <Copy to clipboard> untuk menyalin nilai-nilai tersebut sehingga Anda dapat menempelkannya ke dalam dokumen lain..

B. SAMPLING STRATIFIKASI (STRATIFIED SAMPLING)

Sampling stratifikasi biasanya dilakukan dalam keadaan populasi yang sangat heterogen sehingga populasi dibagi ke dalam sub populasi (yang disebut strata). Tujuan stratifikasi adalah membentuk strata yang keadaannya relatif homogen sehingga tujuan utama memperoleh hasil analisis yang mempunyai presisi tinggi dapat tercapai. Variabel stratifikasi yang paling ideal adalah variabel yang sedang diteliti, tetapi tentu saja hal ini tidak mungkin dilakukan. Dalam penelitian biasanya variabel stratifikasi yang digunakan adalah variabel yang erat hubungannya dengan variabel yang sedang diteliti.

Banyaknya strata yang diperlukan merupakan masalah tersendiri dalam sampling acak stratifikasi. Teori sampling mengatakan bahwa ada hubungan antara banyaknya strata dengan kenaikan presisi. Berdasarkan data empirik kenaikan presisi masih berarti apabila banyaknya strata 6 buah, lebih dari itu kenaikan presisi sudah tidak proporsional lagi *(the magic six)*.

Dalam sampling stratifikasi, proses sampling dilakukan dengan tahapan:

- 1. Definisikan kelompok strata
- 2. Tentukan daftar unit analisis dalam setiap strata
- 3. Tentukan ukuran sampel untuk setiap strata

3. Pilih unit analisis dari setiap strata menggunakan alokasi tertentu (proporsional atau non proporsional) dengan menggunakan undian, tabel bilangan acak atau random generator dalam Unpad SAS

Populasi mempunyai h strata yang masing-masing berukuran N_h

Gunakan sampling acak sederhana pada setiap strata

Gambar-3.2: Proses Sampling Stratifikasi

1. Penghitungan Ukuran Sampel Minimal untuk Estimasi Rata-Rata pada Sampling Stratifikasi

Penghitungan ukuran sampel minimal untuk estimasi rata-rata pada sampling stratifikasi dapat menggunakan rumus berikut:

Estimasi rata-rata:

$$n = \frac{\sum \frac{N_i^2 \sigma_i^2}{w_i}}{N^2 D + \sum N_i \sigma_i^2}$$

dimana:

$$D = B^2/4$$

 W_i = alokasi B = bound of error σ_i^2 = varians strata ke-i

Contoh Masalah

Suatu perusahaan periklanan akan melakukan survey untuk mengetahui rata-rata waktu yang dihabiskan setiap minggu oleh ibu rumah tangga untuk menonton TV di wilayah Kencana. Wilayah Kencana terbagi atas area perkotaan (A), area pedesaan (B), serta area perbatasan desa-kota (C). Di area perkotaan terdapat 155 ibu rumah tangga, di area pedesaan terdapat 62 ibu rumah tangga dan di area perbatasan desa-kota terdapat 93 ibu rumah tangga. Survey pendahuluan di wilayah Kencana menghasilkan $\sigma^2_A = 25$, $\sigma^2_B = 225$ dan $\sigma^2_C = 100$. Berapa besarnya ukuran sampel yang harus diambil untuk survey ini jika diambil bound of error 2?

Pengerjaan Secara Manual

Karena tidak ada informasi apapun, maka soal ini akan diselesaikan dengan menggunakan rumus ukuran sampel minimal untuk estimasi ratarata pada sampling stratifikasi dengan alokasi yang sama pada setiap strata.

$$n = \frac{\frac{(155^2)(25)}{1/3} + \frac{(62^2)(225)}{1/3} + \frac{(93^2)(100)}{1/3}}{(310^2)(1) + (155)(25) + (62)(225) + (93)(100)}$$

n = 56,7

Jadi ukuran sampel minimal yang harus diambil dalam penelitian ini adalah 57 orang

Pengerjaan dengan Menggunakan Unpad SAS

 Pilih menu Analyze->Sampling->Stratified Sampling->Sample Size Required to Estimate Mean.

SAMPLING

	10.00			
Descriptive Statistics	- 1			
<u>C</u> orrelate	- + [
<u>N</u> onparametric Tests	٠l			
<u>S</u> ampling	Þ	Simple Random Sampling	+	
		Stratified Sampling	×.	Sample Size Required to Estimate Mean
	1.0	<u>Clustered</u> Sampling	•	Sample Size Required to Estimate Propo
		Systematic Sampling	ъŤ	
		Random Generator		

Perintah tersebut akan menampilkan kotak dialog sebagai berikut.

mount of strata:	•••	Strata	Size	Dev. Standard
Bound of error:				
Wi Method: 🧭 E	qual			
CN	ot equal			
Sample size:		<u> </u>		
	Calc			
Copy to a	lipboard			

Masukkan 3 untuk ruas *Amount of strata* dan klik tombol .
 Atas perintah ini maka tabel penetapan nilai untuk ketiga strata akan disiapkan.

mount of strata: 13	Strata	Size	Dev. Standard	
	1		0,000	
Bound of error:	2		0,000	
Wildethod: @ Equal	3	1	0,000	
C Not equal				III
Sample size:				Ŧ
Calc				
Copy to clipboard				

Masukkan 155, 62, dan 93 ke ruas *Size* untuk strata 1, 2, dan 3. Masukkan 5, 15, dan 10 ke ruas *Standard deviation* untuk strata 1, 2, dan 3. Masukkan 2 ke ruas *Bound of error*. Tetapkan "Equal" untuk *Wi Method*. Setelah itu klik tombol <Calc>.

BELAJAR STATISTIKA DENGAN UNPAD SAS

Amount of strata:	3 🖬	Strata	Size	Dev. Standard	*
incontrol crists.]		1	155	5,000	
Bound of error:	2	2	62	15,000	
Wi Method: /	2 Eauni	> 3	93	10,000	
Ċ	Not equal				111
Sample size:	57				-
Cop	to clipboard				

Hasil perhitungan ukuran sampel akan ditampilkan di dalam ruas *Sample size (n)*, yaitu 57.

 Klik <Copy to clipboard> untuk menyalin nilai-nilai tersebut sehingga Anda dapat menempelkannya ke dalam dokumen lain..

2. Penghitungan Ukuran Sampel Minimal untuk Estimasi Proporsi pada Sampling Stratifikasi

Penghitungan ukuran sampel minimal untuk estimasi proporsi pada sampling stratifikasi dapat menggunakan rumus berikut:

$$n = \frac{\sum \frac{N_i^2 P_i(1-P_i)}{w_i}}{N^2 D + \sum N_i P_i(1-P_i)}$$

dimana:

 $D = B^2/4$ W_i = alokasi B = bound of error P_i = proporsi pada strata ke-i

Contoh Masalah 1

Perusahaan periklanan ingin mengetahui proporsi ibu rumah tangga yang menonton tayangan berita di wilayah Kencana. Wilayah Kencana terbagi atas area perkotaan (A), area pedesaan (B), serta area perbatasan desa kota (C). Di area perkotaan terdapat 155 ibu rumah tangga, di area pedesaan terdapat 62 ibu rumah tangga dan di area perbatasan desa-kota terdapat 93 ibu rumah tangga. Survey pendahuluan di wilayah Kencana menghasilkan proporsi ibu rumah tangga yang menonton tayangan berita adalah $p_A = 0,80$, $p_B = 0,25$ dan $p_C = 0,50$. Berapa besarnya ukuran sampel yang harus diambil untuk survey ini jika diambil bound of error 0,1?

Pengerjaan Secara Manual

$$n = \frac{\frac{155^2(0,80)(0,20)}{1/3} + \frac{62^2(0,25)(0,75)}{1/3} + \frac{93^2(0,50)(0,50)}{1/3}}{310^2(0,0025) + 155(0,80)(0,20) + 62(0,25)(0,75) + 93(0,50)(0,50)}$$

$$n = 68$$

dengan alokasi sebagai berikut:

 $n_{\rm A} = 23$ $n_{\rm B} = 23$ $n_{\rm C} = 23$

Pengerjaan dengan Menggunakan Unpad SAS

 Pilih menu Analyze->Sampling->Stratified Sampling->Sample Size Required to Estimate Proportion.

Analyze Help				
<u>D</u> escriptive Statistics <u>C</u> orrelate <u>N</u> onparametric Tests)))			
Sampling	•	Simple Random Sampling	F.	
		Stratified Sampling	×	Sample Size Required to Estimate Mean
	a Pres	<u>C</u> lustered Sampling Systematic Sampling <u>R</u> andom Generator	•	S <u>a</u> mple Size Required to Estimate Propo

Perintah tersebut akan menampilkan kotak dialog sebagai berikut.

iount of strata:		Strata	Size	Proportion
ound of error:		-		
Wi Method:	€ Equal			
	C Not equal			
Sample size:]		
	Calc			
Co	py to clipboard			

Masukkan 3 untuk ruas Amount of strata dan klik tombol .

Atas perintah ini maka tabel penetapan nilai untuk ketiga strata akan disiapkan.

Amount of strata:	3		Strata	Size	Proportion
			1		0,000
Bound of error:			2		0,000
Vill Makhaal	C. Faul	•	3		0,000
Sample size:	C Not equal				
	Calc				
Co	py to clipboard				

Masukkan 155, 62, dan 93 ke ruas *Size* untuk strata 1, 2, dan 3. Masukkan 0,8, 0,25, dan 0,5 ke ruas *Proportion* untuk strata 1, 2, dan 3. Masukkan 0,1 ke ruas *Bound of error*. Tetapkan "Equal" untuk *Wi Method*. Setelah itu klik tombol <Calc>.

Amount of strata:		Strata	Size	Proportion	*
		1	155	0,800	
Bound of error: 0,1		2	62	0,250	
WiMethod:	i	3	93	0,500	111
Sample size:	68				Ŧ
Copy to clipboar	d				

Hasil perhitungan ukuran sampel akan ditampilkan di dalam ruas *Sample size* (n), yaitu 68.

 Klik <Copy to clipboard> untuk menyalin nilai-nilai tersebut sehingga Anda dapat menempelkannya ke dalam dokumen lain.

Contoh Masalah 2

Sebuah perusahaan periklanan ingin mengetahui proporsi ibu rumah tangga yang menonton tayangan berita di wilayah Kencana. Wilayah Kencana terbagi atas area perkotaan (A), area pedesaan (B), serta area perbatasan desa kota (C). Di area perkotaan terdapat 155 ibu rumah tangga, di area pedesaan terdapat 62 ibu rumah tangga dan di area perbatasan desa

kota terdapat 93 ibu rumah tangga. Survey pendahuluan di wilayah Kencana menghasilkan proporsi ibu rumah tangga yang menonton tayangan berita adalah p = 0,4. Berapa besarnya ukuran sampel yang harus diambil untuk survey ini jika diambil bound of error 0,1 dan menggunakan alokasi proporsional untuk meminimumkan biaya?

Pengerjaan Secara Manual

 $n = \frac{\frac{155^2(0,40)(0,60)}{0,50} + \frac{62^2(0,40)(0,60)}{0,20} + \frac{93^2(0,40)(0,60)}{0,30}}{310^2(0,0025) + 155(0,40)(0,60) + 62(0,40)(0,60) + 93(0,40)(0,60)}$ n = 74dengan alokasi sebagai berikut: n_A = 37 n_B = 15 n_C = 23

Pengerjaan dengan Menggunakan Unpad SAS

 Pilih menu Analyze->Sampling->Stratified Sampling->Sample Size Required to Estimate Proportion.

Perintah tersebut akan menampilkan kotak dialog sebagai berikut.

BELAJAR STATISTIKA DENGAN UNPAD SAS

Amount of strata:		Strata	Size	Proportion
Bound of error:		-		
Wi Method:	€ Equal			
	C Not equal			
Sample size:]		
	Calc			
Co	py to clipboard			

Masukkan 3 untuk ruas *Amount of strata* dan klik tombol .
 Atas perintah ini maka tabel penetapan nilai untuk ketiga strata akan disiapkan.

Amount of strata:	3		Strata	Size	Proportion	*
incart of oraca.	1- 1		1		0,000	
Bound of error:			2		0,000	
Wi Method:	 Equal Not equal 	•	3		0,000	111
Sample size:						-
	Calc					
Co	py to clipboard					

Masukkan 155, 62, dan 93 ke ruas *Size* untuk strata 1, 2, dan 3. Masukkan 0,4, 0,4, dan 0,4 ke ruas *Proportion* untuk strata 1, 2, dan 3. Masukkan 0,1 ke ruas *Bound of error*. Tetapkan "Not equal" untuk *Wi Method*. Setelah itu klik tombol <Calc>.

Amount of strata: 3	Strata	Size	Proportion	*
	1	155	0,400	
Bound of error: 0,1	2	62	0,400	
WillMethod: C. Fauel	▶ 3	93	0,400	
 Not equal 				H
Sample size: 74				-
Calc Copy to clipboard				

Hasil perhitungan ukuran sampel akan ditampilkan di dalam ruas *Sample size (n)*, yaitu 74.

 Klik <Copy to clipboard> untuk menyalin nilai-nilai tersebut sehingga Anda dapat menempelkannya ke dalam dokumen lain.

C. SAMPLING KLASTER (CLUSTER SAMPLING)

Seperti sudah diketahui unit analisis adalah sebuah kesatuan yang karakteristiknya akan diukur. Unit analisis bisa merupakan sebuah kesatuan yang berdiri sendiri (tidak dapat dibagi-bagi) seperti: orang, atau dapat juga merupakan sebuah kesatuan yang di dalamnya mengandung unit-unit analisis lainnya (yang disebut klaster) seperti: keluarga, RT, kelurahan, dsb.

Berlawanan dengan pembentukan strata, klaster dibentuk dengan tujuan memperoleh keadaan <u>seheterogen mungkin</u>. Jika dalam klaster keadaan heterogen, maka antar klaster menjadi homogen. Bila pembentukan klaster seperti ini dapat tercapai, maka banyaknya klaster yang digunakan untuk menentukan sampel penelitian cukup 2 buah saja (karena homogen).

Dalam praktek di lapangan, klaster yang biasa diambil adalah daerah administratif seperti: RT, RW, kelurahan, kecamatan, dsb. Akibat pembentukan klaster seperti ini, maka keadaan di dalam klaster relatif heterogen dan antar klaster relatif homogen. Oleh karena itu disarankan melakukan pembentukan klaster menggunakan daerah administratif

Pada umumnya sampling klaster dapat dibedakan atas sampling satu tahap dan sampling klaster dua tahap. Dalam sampling klaster satu tahap, proses sampling dilakukan dengan tahapan:

- 1. Tentukan daftar klaster yang terbentuk
- 2. Gunakan teknik sampling acak sederhana untuk memilih klaster
- 3. Semua unit analisis dalam klaster yang terpilih akan diteliti

Sampling klaster satu tahap dimana populasi mepunyai N klaster

Gunakan sampling acak sederhana untuk memilih klaster dan semua anggota klaster yang terpilih diteliti

Gambar 3.3: Proses Sampling Klaster Satu Tahap

Dalam sampling klaster dua tahap, proses sampling dilakukan dengan tahapan:

- 1. Tentukan daftar klaster yang terbentuk
- 2. Gunakan teknik sampling acak sederhana untuk memilih klaster
- 3. Pilih unit analisis secara acak dari setiap klaster yang terpilih

Sampling klaster dua tahap dengan N klaster

Gunakan sampling acak sederhana untuk memilih klaster.

Gunakan sampling acak sederhana untuk memilih unit analisis dari klaster yang terpilih yang masuk menjadi anggota sampel

Gambar 3.4: Proses Sampling Klaster Dua Tahap

Tidak ada suatu aturan yang mudah yang dapat digunakan untuk menentukan ukuran sampel minimal apabila penelitian survey dilakukan dengan menggunakan teknik sampling klaster. Suatu pendekatan yang paling mudah digunakan adalah dengan menggunakan pendekatan sampling acak sederhana dan kemudian mengalikan dengan *design effect* untuk mendapatkan ukuran sampel yang dibutuhkan pada sampling klaster. *Design effect* adalah rasio varians sampling klaster dengan varians sampling acak sederhana. Biasanya *design effect* diambil sebesar 2. Modul *Cluster Sampling* digunakan untuk menghitung ukuran sampel minimal untuk teknik sampling klaster. Metoda yang digunakan untuk keperluan ini terdiri dari:

- Sample size required to Estimate Mean
- Sample size required to Estimate Proportion

Disain input-output untuk menghitung ukuran sampel untuk mengestimasi rata-rata adalah seperti ditunjukkan dalam gambar berikut.

Cluster Sampling: Sample Size Require to Estimate Mean				
Population size N = Standard deviation σ = Bound of error B = Sample size n =	Calc Copy to clipboard			
Authors: Ratna Jatnika & Mustofa Haffas	Version 1.2.2.6			

Disain input-output untuk menghitung ukuran sampel untuk mengestimasi proporsi adalah seperti ditunjukkan dalam gambar berikut.

Clustered Sampling: Sample Size Require to Es	stimate Proportion
Population size N =	Calc
Proportion p =	Copy to clipboard
Bound of error B =	
Sample size n =	
Authors: Ratna Jatnika & Mustofa Haffas	Version 1.2.2.6

D. SAMPLING SISTEMATIK (SYSTEMATIC SAMPLING)

Sampling sistematik biasanya banyak digunakan dalam *trafic survey* atau *marketing research*. Ada beberapa peneliti yang menganggap sampling sistematik bukan merupakan sampling acak, padahal sampling sistematik merupakan sampling acak karena pemilihan pertama dilakukan secara acak. Beberapa peneliti menyebut sampling sistematik sebagai *Quasi random sampling* atau *Pseudo random sampling*.

Sampling sistematik dapat dilakukan tanpa adanya kerangka sampling yang lengkap, misalnya dalam penelitian untuk populasi bergerak (*mobile population*). Kerugian sampling sistematik adalah jika dalam kerangka sampling terdapat *periodicity* (letak satuan sampling yang mempunyai interval tetap dan mempunyai karakteristik yang sama). Cara mengatasi hal ini adalah dengan mengubah atau mengambil *random start* beberapa kali (paling banyak 3 kali).

Dalam sampling sistematik, proses sampling dilakukan dengan tahapan:

- 1. Tentukan ukuran sampel
- 2. Pilih random start dan interval
- 3. Mulai dengan random start yang terpilih, dan tambahkan dengan interval sampai batas yang ditentukan
- 4. Apabila terdapat periodicity, random start boleh diubah sampai 3 kali

Proses Sampling Sistematik

Sampling sistematik merupakan alternatif dari sampling acak sederhana akan tetapi metode pemilihan data sampel berbeda. Sampling acak sederhana melakukan pemilihan sampel menggunakan tabel bilangan acak atau random generator, akan tetapi sampling sistematik melakukan pemilihan sampel menggunakan random start dan interval. Oleh karenanya rumus ukuran sampel minimal untuk sampling sistematik dapat menggunakan rumus ukuran sampel minimal untuk sampling acak sederhana. Modul *Systematic Sampling* digunakan untuk menghitung ukuran sampel minimal untuk teknik sampling sistematik. Metode yang digunakan untuk keperluan ini terdiri dari:

- Sample size required to Estimate Mean
- Sample size required to Estimate Proportion
- Sample size required to Estimate Correlation and Regression

Disain input-output untuk menghitung ukuran sampel untuk mengestimasi rata-rata adalah seperti ditunjukkan dalam gambar berikut.

Systematic Sampling: Sample Size Require to E	Estimate Mean
Population size N =	Calc
Standard deviation $\sigma =$	Copy to clipboard
Bound of error B =	
Sample size n =	
Authors: Ratna Jatnika & Mustofa Haffas	Version 1.2.2.6

Disain input-output untuk menghitung ukuran sampel untuk mengestimasi proporsi adalah seperti ditunjukkan dalam gambar berikut.

Systematic Sampling: Sample Size Require to E	stimate Proportion
Population size N =	Calc
Proportion p =	Copy to clipboard
Bound of error B =	
Sample size n =	
Authors: Ratna Jatnika & Mustofa Haffas	Version 1.2.2.6

Disain input-output untuk menghitung ukuran sampel untuk mengestimasi korelasi dan regresi adalah seperti ditunjukkan dalam gambar berikut.

Systematic Sampling: Sample Size Required to B	Estimate Correlatio 🗾 🏹
Correlation p =	Calc
Type 1 error α =	Copy to clipboard
Type 2 error $\beta =$	
Sample size n =	
Authors: Ratna Jatnika & Mustofa Haffas	Version 1.2.2.6

E. RANDOM GENERATOR

Seperti telah dijelaskan sebelumnya, proses pengacakan (pemilihan unit analisis dalam populasi yang terpilih menjadi anggota sampel) dapat dilakukan dengan undian, tabel bilangan atau *random generator*. Dengan menggunakan *random generator* proses pengacakan menjadi mudah dan cepat.

Contoh Masalah

Suatu populasi berukuran 100. Dari populasi tersebut akan diambil sampel berukuran 10. Tentukan nomor-nomor unit analisis yang terambil ke dalam sampel tersebut apabila pemilihan dilakukan secara acak.

Pengerjaan dengan Menggunakan Unpad SAS

Lakukan langkah-langkah berikut untuk menyelesaikan masalah di atas.

 Pilih menu Analyze->Sampling->Stratified Sampling->Random Generator.

Perintah tersebut akan menampilkan kotak dialog sebagai berikut.

BELAJAR STATISTIKA DENGAN UNPAD SAS

Random Generator				×
Population size: Sample size: Generate	Sample	3	Random	
		Copy t	o Clipboard	
Authors: Ratna Jatnika & Mustofa	Haffas		Version	1.2.2.6

 Masukkan 100 untuk ruas *Population size*, 10 untuk ruas *Sample size*, dan klik tombol <Generate>.

Atas perintah ini maka nomor-nomor unit analisis yang terambil akan ditampilkan didalam tabel, yaitu seperti ditunjukkan di bawah ini.

Population size:	100	Sample	Random	*	
		1	5		
Sample size: 10	2	16			
	3	18			
	4	27			
	[5	31		
		6	49		
	7	57			
		8	83	н	
		9	91		
	-	10	96		
				+	
		Copy to Clipboard			

Nomor-nomor unit analisis yang terambil akan selalu berubah setiap kali perintah <Generate> diberikan.

 Klik <Copy to clipboard> untuk menyalin nilai-nilai tersebut sehingga Anda dapat menempelkannya ke dalam dokumen lain..

4

Uji Nonparametrik

A. UJI CHI-SQUARE UNTUK SATU SAMPEL

Uji chi-kuadrat digunakan untuk menguji kasus satu sampel dengan data nominal. Uji ini dinamakan juga uji kecocokan distribusi.

Contoh Masalah

Sebuah penelitian dilakukan untuk mengetahui perbedaan minat pemilihan jurusan pada lulusan kelas satu Sekolah Menengah Atas.

Data 45 siswa yang mengikuti tes didapatkan data sebagai berikut:

ID	Minat	ID	Minat	ID	Minat
1	1	16	3	31	1
2	1	17	2	32	1
3	3	18	2	33	1
4	3	19	2	34	1
5	3	20	2	35	1
6	3	21	2	36	1
7	3	22	2	37	3
8	3	23	2	38	3
9	3	24	2	39	3
10	3	25	2	40	3
11	3	26	2	41	2
12	3	27	1	42	2
13	3	28	1	43	2
14	3	29	1	44	2
15	3	30	1	45	2
Keter	angan:				

Minat: 1=IPA, 2=IPS, 3=BAHASA

Dengan taraf nyata 10%, 5%, dan 1%, ujilah apakah terdapat perbedaan minat pemilihan jurusan pada siswa SMA tersebut?

Pengerjaan Secara Manual

1. Rumuskan hipotesis.

 H_0 : Tidak terdapat perbedaan minat pemilihan jurusan pada siswa SMA

H₁: Terdapat perbedaan minat pemilihan jurusan pada siswa SMA

- 2. Statistik Uji
 - Tetapkan *V* untuk variabel yang akan diuji.
 - Hitunglah:
 - *N* = jumlah seluruh sampel
 - *k* = jumlah kategori
 - df = jumlah kategori 1

Untuk contoh masalah di atas, N = 45, k = 3, dan df = 2.

 Buatlah tabel kontingensi untuk nilai *O* (observasi) yang menggambarkan frekuensi tiap kategori.

V	0
1	01
	:
k	Ok

Untuk contoh masalah di atas adalah:

Minat	Observasi
1	12
2	18
3	15

• Hitunglah nilai harapan *E* (ekspektasi) dari keseluruhan kategori dengan rumus E = N/k

V	0	Ε
1	01	E₁
:	:	
Κ	Ok	Ek

Untuk contoh masalah di atas adalah:

Minat	Observasi	Ekspektasi
1	12	15
2	18	15
3	15	15

Hitunglah nilai χ² dengan rumus:

$$\chi^{2} = \sum_{i=1}^{\kappa} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

Untuk contoh masalah di atas adalah:

$$\chi^{2} = \frac{(12 - 15)^{2} + (18 - 15)^{2} + (15 - 15)^{2}}{15}$$
$$\chi^{2} = 1,2$$

• Cari χ^2_{tabel} untuk *df* dan α = 0,10, 0,05, dan 0,01 dari *tabel chi-square*. Untuk contoh masalah di atas, *df* = 2, maka nilai χ^2_{tabel} untuk α = 0,10, 0,05, dan 0,01 adalah:

$$\begin{split} \chi^2_{(2;\,0,10)} &= 4,60517 \\ \chi^2_{(2;\,0,05)} &= 5,99146 \\ \chi^2_{(2;\,0,01)} &= 9,21034 \end{split}$$

3. Kriteria uji

Tolak H₀ jika nilai $p < nilai \alpha = 0,05$.

Dari tabel *Chi-Square* dengan nilai $\chi^2=1,2$ dan nilai df=2 didapatkan nilai p value = diantara 0,3 – 0,5, sehingga dapat dikatakan nilai p value > 0,3.

4. Kesimpulan

Karena nilai χ^2 = 1,2 > 0,5, maka H₀ diterima.

Artinya, tidak terdapat perbedaan minat pemilihan jurusan pada siswa SMA

Pengerjaan dengan Menggunakan Unpad SAS

- Buka tabel contoh *np_chi*
- Pilih menu Analyze->Nonparametric Test->Chi-Square
- Pilih variabel *Minat* untuk untuk *test variable* seperti pada gambar di bawah ini.

BELAJAR STATISTIKA DENGAN UNPAD SAS

		Test Variable List:		
		oll [Minat]		Exact
	mÞ			Options
Expected Range Get from data Use specified range Lower: Upper:		Expected Values • All categories equa • Values:	1	
		Add Change Remove		
or Posta	 	ret Cancel	Uale	l

- Pilih *Get from data* untuk *Expected Range* dan *All categories equal* untuk *Expected Values*.
- Klik **<OK>.** Setelah itu akan muncul luaran seperti gambar di bawah ini.

Nonparametric Test

Chi-Square Test

Frequenci	es lav		
Minat	Observed N	Expected N	Residual
IPA	12	15,0000	-3,0000
IPS	15	15,0000	0,0000
BAHASA	18	15,0000	3,0000
Total	45		

Statistics Test

	Minat
df	2
χ^2	1,20000
χ ² (2; 0,10)	4,60517
χ ² (2; 0,05)	5,99146
$\chi^{2}(2; 0.01)$	9,21034

B. UJI RUNTUN UNTUK SATU SAMPEL

Uji runtun digunakan untuk menguji keacakan sampel.

Contoh Masalah

Seorang peneliti tertarik untuk melihat apakah barisan yang terjadi di sebuah bioskop bersifat random atau tidak. Data di peroleh dengan sangat sederhana yaitu dengan melakukan hitungan terhadap urutan barisan yang terjadi di bioskop tersebut.

Dari 50 orang yang mengantri di bioskop tersebut didapatkan data sebagai berikut : [np_runs]

ID	JK	ID	JK	ID	JK	ID	JK	ID	JK
1	1	11	0	21	1	31	0	41	0
2	0	12	1	22	0	32	1	42	1
3	1	13	0	23	1	33	0	43	1
4	0	14	1	24	0	34	1	44	1
5	1	15	0	25	1	35	0	45	1
6	1	16	1	26	1	36	1	46	0
7	1	17	1	27	0	37	1	47	1
8	0	18	1	28	0	38	0	48	0
9	0	19	1	29	0	39	1	49	1
10	1	20	0	30	1	40	1	50	1
Keterar	igan:								

JK (Jenis Kelamin): 0=Perempuan, 1=Laki-laki

Dengan taraf nyata 10%, 5%, dan 1% ujilah apakah barisan tersebut bersifat atau tidak ?

Pengerjaan Secara Manual

- 1. Rumuskan hipotesis.
 - H_0 : Urutan laki-laki dan perempuan di pada barisan antrian bioskop bersifat acak
 - H₁: Urutan laki-laki dan perempuan di pada barisan antrian bioskop bersifat tidak acak
- 2. Statistik Uji
 - Hitunglah:
 - *N* = jumlah sampel
 - *n* = jumlah sampel kategori pertama (perempuan)
 - *m* = jumlah sampel kategori kedua (laki-laki)
 - *r* = jumlah runtun

Untuk contoh masalah di atas, N = 50, n = 20, m = 30, dan r = 35

 Karena jumlah *m* atau *n* lebih dari 20 maka digunakan rumus dengan pendekatan distribusi normal:

$$Z = \frac{r + h - \left(\frac{2mn}{N+1}\right)}{\sqrt{\frac{(2mn(2mn-N))}{(N^2 (N-1))}}}$$

dimana:

• h = 0.5 jika $r < \left(\frac{2mn}{N+1}\right)$ • h = -0.5 jika $r > \left(\frac{2mn}{N+1}\right)$

Untuk contoh masalah di atas adalah:

$$Z = \frac{35 - 0.5 - \left(\frac{2 \times 30 \times 20}{50 + 1}\right)}{\sqrt{\frac{(2 \times 30 \times 20(2 \times 30 \times 20 - 50))}{(50^2 (50 - 1))}}}$$
$$Z = 2,976$$

 Cari nilai Z_{tabel} dari tabel distribusi normal untuk taraf nyata 10%, 5%, dan 1%. Dari tabel diperoleh:

$$Z_{0,10} = 1,6448$$

 $Z_{0,05} = 1,9600$
 $Z_{0,01} = 2,5760$

3. Kriteria uji

Tolak H₀ jika nilai $Z_{hitung} > Z_{tabel}$.

Untuk contoh masalah di atas, karena nilai $Z_{hitung} > Z_{tabel}$ maka H₀ ditolak.

4. Kesimpulan

Urutan laki-laki dan perempuan di pada barisan antrian bioskop bersifat tidak acak.

Pengerjaan dengan Menggunakan Unpad SAS

- Buka tabel contoh np_run
- Pilih menu Analyze->Nonparametric Test->Runs
- Pilih variabel *JK* untuk untuk *test variable* seperti pada gambar di bawah ini.

	 Te	st Variables:	
	1	Jenis Kelamin [JK]	Exact
	n)•		Uptions
			_
Test Type 🔽 Median	Mode		
Test Type I⊽ Median I∏ Mean	Mode Custom:		

- Pilih/contreng *Median* untuk *Test Type*.
- Klik **<OK>.** Setelah itu akan muncul luaran seperti gambar di bawah ini.

Nonparametric Test

Run Test

	JK
Test Value ^a	1,000
Cases < Test Value	20
Cases >= Test Value	30
Total Cases	50
Number of Runs	35
Z (without correction factor)	2,9794
Z (with correction factor)	2,8304
Z _(0,10)	1,6448
Z _(0,05)	1,9600
Z(0.01)	2,5760

C. 2-INDEPENDENT SAMPLES

1. Uji Mann Whitney

Uji Mann Whitney digunakan untuk menguji kasus 2 sampel independen dengan variabel yang memiliki skala pengukuran ordinal.

Contoh Masalah

Suatu penelitian dilakukan untuk mengetahui apakah ada perbedaan hasil belajar IPA antara kelas yang belajar dengan metode praktikum dan teori. Setelah mengikuti ujian pelajaran IPA didapatkan data peringkat siswa di kelas sebagai berikut:

	ID	Metode	Peringkat	ID	Metode	Peringkat	ID	Metode	Peringkat
	1	1	15	21	1	10	4	1 2	34
	2	2	29	22	2	28	42	2 2	45
	3	1	23	23	2	51	43	3 1	12
	4	2	3	24	1	1	44	1 2	38
	5	1	53	25	1	6	4	5 1	8
	6	1	22	26	2	46	46	δ 1	9
	7	2	33	27	2	43	4	/ 2	56
	8	1	18	28	1	2	48	3 2	50
	9	1	52	29	1	54	49) 1	32
	10	2	24	30	2	25	50) 2	35
	11	1	16	31	2	20	5	1	4
	12	1	21	32	1	31	52	2 2	47
	13	2	44	33	1	5	53	3 1	7
	14	2	37	34	2	19	54	1 1	13
	15	2	48	35	1	14	5	5 1	41
	16	1	17	36	2	27	56	6 1	11
	17	2	49	37	2	39			
	18	1	40	38	1	30			
Ī	19	2	36	39	2	55			
Ī	20	2	42	40	2	26			

KETERANGAN Metode: 1=praktikum, 2=teori

Dengan taraf nyata 10%, 5%, dan 1% ujilah apakah terdapat perbedaan hasil belajar IPA antara kelas yang belajar dengan praktikum dan teori?

Pengerjaan Secara Manual

- 1. Rumuskan Hipotesis
 - H₀: Tidak terdapat perbedaan nilai IPA antara metode belajar praktikum dengan metode belajar teori
 - H₁: Terdapat perbedaan nilai IPA antara metode belajar praktikum dengan metode belajar teori.
- 2. Statistik Uji
 - *N* = Jumlah keseluruhan sampel
 - Ranking data untuk variabel *Peringkat*.

ID	Metode	Peringkat	ID	Metode	Peringkat	ID	Metode	Peringkat
	1	1		1	21		1	41
	1	2		1	22		2	42
	2	3		1	23		2	43
	1	4		2	24		2	44
	1	5		2	25		2	45
	1	6		2	26		2	46
	1	7		2	27		2	47
	1	8		2	28		2	48
	1	9		2	29		2	49
	1	10		1	30		2	50
	1	11		1	31		2	51
	1	12		1	32		1	52
	1	13		2	33		1	53
	1	14		2	34		1	54
	1	15		2	35		2	55
	1	16		2	36		2	56
	1	17		2	37			
	1	18		2	38			
	2	19		2	39			
	2	20		1	40			

- Jumlahkan nilai *Ranking* untuk setiap kategori *Metode*, yaitu "praktikum" dan "teori". Dalam contoh masalah ini, jumlah nilai *rangking* untuk kategori "praktikum" adalah 567 dan untuk kategori "teori" adalah 1.029.
- Tetapkan nilai *Wx*, yaitu jumlah ranking yang lebih kecil. Dalam contoh masalah ini *Wx* = 567 (Metode Praktikum).
- Tetapkan nilai *m*, yaitu jumlah sampel kelompok yang lebih kecil.
- Tetapkan nilai *n*, yaitu jumlah sampel kelompok yang lebih besar.
- Gunakan rumus Wilcoxon-Mann Whitney dengan pendekatan distribusi normal:

$$Z = \frac{W_{\chi} \pm 0.5 - \frac{m(N+1)}{2}}{\sqrt{\frac{mn(N+1)}{12}}}$$

Keterangan:

Z ditambah 0,5 jika Wx < m(N+1)/2

Z dikurangi 0,5 jika Wx > m(N+1)/2

Untuk contoh masalah di atas, nilai Z adalah

$$Z = \frac{567 \pm 0.5 - \frac{28(56+1)}{2}}{\sqrt{\frac{28*28(56+1)}{12}}}$$
$$Z = -3,77717$$

• Cari Z_{tabel} untuk α =0,10, 0,05, dan 0,01 dari tabel distribusi normal.

Z _(0,10) = 1,6448	uji dua pihak
Z _(0,05) = 1,9600	uji dua pihak
$Z_{(0,01)} = 2,5760$	uji dua pihak
Z _(0,10) = 1,2816	uji satu pihak
$Z_{(0,05)} = 1,6448$	uji satu pihak
Z _(0,01) = 2,3263	uji satu pihak

3. KriteriaUji

Kriteria uji tolak H_0 jika $Z > Z_{tabel}$.

Dengan nilai α = 10%, 5%, maupun 1% maka H_0 = ditolak.

4. Kesimpulan

Dapat disimpulkan bahwa "Terdapat perbedaan nilai IPA antara metode belajar praktikum dengan metode belajar teori".

Pengerjaan dengan Menggunakan Unpad SAS

- Buka tabel contoh np_2inde
- Pilih menu Analyze->Nonparametric Test->2-Independent Samples
- Pilih variabel *Metode* untuk *grouping variables* dan variabel *Peringkat* untuk *test variable* seperti pada gambar di bawah ini.

		Test V.	ariable List:	
		🛷 (F	Peringkat]	Exact
				Options
	•••			
		 Groupii	ng Variable:	
		[Meto	ide]	
Fest Type		<u>,</u>		
🔽 Mann-Whitney U	Г	Kolmogor	ov-Smirnov Z	
Moses extreme reacti	ons 🔽	Wald-Wo	lfowitz runs	
OK Paste	I E	Reset	Cancel	Help

- Pilih/contreng *Mann-Whitney U* untuk *Test Type*.
- Klik **<OK>.** Setelah itu akan muncul luaran seperti gambar di bawah ini.

Nonparametric Test Mann-Whitney

Peringkat			
Matada		Pering	,kat
Metode	N	Mean Rank	Sum of Rank
Praktikum	28	20,25	567
Teori	28	36,75	1.029
Total	56		

Test Statistics			
Mann-Whitney U	161,00		
Wilcoxon W	567,00		
Z		-3,7772	
Z _(0,10)	1,6448	2-tailed	
Z(0,05)	1,9600	2-tailed	
Z(0,01)	2,5760	2-tailed	
Z(0,10)	1,2816	1-tailed	
Z(0,05)	1,6448	1-tailed	
Z(0,01)	2,3263	1-tailed	

2. Uji Chi-square

Uji ini dapat digunakan untuk menguji dua kelompok yang independen dengan variabel yang memiliki skala pengukuran paling sedikit nominal dan berbentuk data kategori.

Contoh Masalah

Suatu penelitian dilakukan untuk mengetahui apakah ada perbedaan jenis pekerjaan yang dipilih laki-laki dengan perempuan. Pengambilan terhadap 18 orang memberikan hasil sebagai berikut.

ID	JK	JP	ID	JK	JP	ID	JK	JP
1	1	1	7	1	3	13	2	2
2	1	1	8	1	3	14	2	2
3	1	1	9	2	1	15	2	2
4	1	2	10	2	1	16	2	2
5	1	2	11	2	1	17	2	3
6	1	2	12	2	1	18	2	3
VETER		N						

KETERANGAN JK (Jenis Kelamin): 1=Laki-laki, 2=Perempuan

JP (Pekerjaan): 1: PNS, 2: Swasta, 3: Lainnya

Dengan taraf nyata 10%, 5%, dan 1% ujilah apakah terdapat perbedaan jenis pekerjaan yang dipilih antara laki-laki dengan perempuan?

Pengerjaan Secara Manual

- 1. Rumuskan Hipotesis
 - H₀: Tidak terdapat perbedaan jenis pekerjaan yang dipilih antara lakilaki dengan perempuan.
 - H₁: Terdapat perbedaan jenis pekerjaan yang dipilih laki-laki dengan perempuan.
- 2. Statistik Uji
 - Tetapkan:
 - V1 = variabel yang akan diuji
 - *V2* = variabel kelompok

Untuk contoh masalah di atas, $V1 = JP \operatorname{dan} V2 = JK$.

- Hitunglah:
 - N =jumlah data
 - *c* = jumlah kategori *JP*
 - *r* = jumlah kategori *JK*
 - *df* =(r-1)(c-1)

Untuk contoh masalah di atas, N = 18, c = 3, r = 2, dan df = 2.

 Buat tabel kontingensi V2-V1 dengan nilai O (observasi) berupa frekuensi pasangan V2-V1.

				T . (.)				
		i	1		С	Iotai		
		1	011		O _{1j}	<i>m</i> 1		
	V2	:	:	:				
		R	O r1	:	Orc	mr		
	Тс	otal	n 1		nc	Ν		
r	$m_r = \sum_{j=1}^c O_{rj}$							
r	$n_c =$	$\sum_{i=1}^{r} O_{o}$	ci					

Untuk contoh masalah di atas, tabel kontingensinya adalah:

	P	Total			
		1	2	3	TOLAT
lania Kalamin	1	3	3	2	8
Jenis Kelamin	2	4	4	2	10
Total		7	7	4	18

 Buat tabel bantu untuk mendapatkan nilai *E* (ekspektasi) dari setiap nilai *O* (observasi).

				V1			
		Ľ.	1		С		
		1	E11		E1j		
	V2				:		
		r	E _{r1}		Erc		
E	$E_{ij} = \frac{m_i * n_j}{N}$						

Untuk contoh masalah di atas, tabel bantunya adalah:

	Pekerjaan			
		1	2	3
lania Kalamin	1	3,1111	3,1111	1,7778
Jenis Kelamin	2	3,8889	3,8889	2,2222

Hitung χ² dengan rumus

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

Untuk contoh masalah di atas adalah sebagai berikut.

$$\chi^2 = 0,0040 + 0,0040 + 0,0278 + 0,0032 + 0,0032 + 0,0222$$

 $\chi^2 = 0,0643$

- Cari χ^{2}_{tabel} untuk df=2 dan $\alpha=0,10, 0,05$, dan 0,01 dari tabel *chi-square*.
 - $\chi^{2}_{(2; 0,10)} = 4,60517$ $\chi^{2}_{(2; 0,05)} = 5,99146$
 - $\chi^{2}(2; 0,01) = 9,21034$
- 3. KriteriaUji

Kriteria uji tolak H_0 jika $\chi^2_{hitung} > \chi^2_{tabel}$.

Untuk contoh kasus di atas, dengan nilai α = 10%, 5%, dan 1% maka H_0 diterima.

4. Kesimpulan

Dapat disimpulkan bahwa "Tidak terdapat perbedaan jenis pekerjaan yang dipilih antara laki-laki dengan perempuan".

Pengerjaan dengan Menggunakan Unpad SAS

- Buka tabel contoh np_2inde_5
- Pilih menu Analyze->Nonparametric Test->2-Independent Samples
- Pilih variabel **JK** untuk *grouping variables* dan variabel JP untuk *test variable* seperti pada gambar di bawah ini.

		Test Va	ariable List:	
		Pe	kerjaan [JP]	Exact
				Options
	•••			
		l Groupir	ng Variable:	
		Jenis I	Kelamin [JK]	
Fest Type				
Mann-Whitney U Moses extreme reaction	s [] /	(olmogori Vald-Wo	ov-Smirnov Z 🛛 🔽 Ifowitz runs	Chi-square
OK Paste	Be	eset	Cancel	Help

- Pilih/contreng *Chi-square* untuk *Test Type*.
- Klik **<OK>.** Setelah itu akan muncul luaran seperti gambar di bawah ini.

Nonparametric Test

Chi-Square

Contingency	Table
-------------	-------

T		Tetal			
jenis Kelamin	PNS	Swasta	Lainnya	Total	
Laki-laki	3	3	2	8	
Perempuan	4	4	2	10	
Total	7	7	4	18	

Expectation Table

Inter Walnut	Pekerjaan					
Jenis Kelamin	PNS	Swasta	Lainnya			
Laki-laki	3,1111	3,1111	1,7778			
Perempuan	3,8889	3,8889	2,2222			

Test Statistics

N	18		
с	3		
r	2		
df	2		
χ^2	0,0643		
χ ² (2; 0,10)	4,6052	1-tailed	
χ ² (2; 0,05)	5,9915	1-tailed	
$\chi^2(2; 0.01)$	9,2103	2-tailed	

D. K-INDEPENDENT SAMPLES

1. Uji Kruskal Wallis H

Uji Kruskal Wallis dapat digunakan untuk menguji kasus *k* sampel independen dengan variabel yang memiliki skala pengukuran ordinal.

Contoh Masalah

Seorang guru olahraga ingin mengetahui mengenai minat muridnya menjadi atlet olahraga. Diasumsikan bahwa anak-anak yang memiliki minat baik di bidang olahraga akan mendapatkan nilai yang baik dan memiliki peluang untuk menjadi atlet olahraga yang lebih besar. Terdapat tiga kelompok murid yang dibedakan berdasarkan minatnya, yaitu murid yang hanya menyukai mata pelajaran ilmiah, murid yang menyukai pelajaran ilmiah dan olahraga, dan murid yang hanya menyukai bidang olahraga. Guru tersebut pun mengambil 14 sampel anak yang dibagi menjadi 3 kategori di atas.

Data minat siswa dituliskan dalam tabel berikut (data fiktif) beserta skor minatnya terhadap olahraga.

ID	Minat	Skor	ID	Minat	Skor
1	3	149	8	1	101
2	1	83	9	2	82
3	2	132	10	1	96
4	1	128	11	3	166
5	2	124	12	2	135
6	1	61	13	3	115
7	2	109	14	3	147

Minat: 1=Olahraga, 2=Ilmiah, 3=Olahraga dan Ilmiah

Penyelesaian Secara Manual

- 1. Hipotesis.
 - H₀: Tidak ada perbedaan yang signifikan antara nilai rata-rata minat kelompok murid dari ketiga kategori tersebut
 - H₁: Terdapat perbedaan yang signifikan antara nilai rata-rata minat kelompok murid dari ketiga kategori tersebut
- 2. Sort Data berdasarkan nilai dan beri ranking

ID	Minat	Skor	Ranking
8	1	61	1
3	2	82	2
6	1	83	3
2	1	96	4
10	1	101	5
12	2	109	6
1	3	115	7
5	2	124	8
4	1	128	9
7	2	132	10
9	2	135	11
14	3	147	12
11	3	149	13
13	3	166	14

3. Kelompokkan Data Berdasarkan Skor-Minat

Skor-Minat			
1	2	k	
96	82	115	
128	124	149	
83	132	166	
61	135	147	
101	109		

4. Kelompokkan Data Berdasarkan Ranking-Minat

Rangking-Minat			
1	2	K	
4	2	7	
9	8	13	
3	10	14	
1	11	12	
5	6		

5. Hitung n₁ sampai n_k, R₁ sampai R_k.

	1	2	k
п	5	5	4
R	22	37	46

6. Hitung H_{hitung} dan H_{table}

$$H_{hitung} = \frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_j^2}{n_j^2} - 3(N+1)$$

Untuk contoh masalah di atas adalah sebagai berikut.

$$H_{hitung} = \frac{12}{14(14+1)} \left(\frac{22^2}{5} + \frac{37^2}{5} + \frac{46^2}{4}\right) - 3(14+1)$$

 $H_{hitung} = 6,405714$

$$H_{tabel} = \chi_{(df; 0, 05)}$$

$$H_{tabel} = \chi_{(2; 0,05)}$$

$$H_{tabel} = 5,991465$$

7. Uji Hipotesis

H₀ diterima jika H_{hitung} < H_{tabel}.

Dalam contoh masalah di atas, $H_{hitung} \ge H_{tabel}$ (6,405714 \ge 5,9915), maka H_0 ditolak.

8. Kesimpulan

Terdapat perbedaan yang signifikan antara nilai rata-rata minat kelompok murid dari ketiga kategori tersebut

9. Uji Lanjutan

Pada kasus ini, ketiga kelompok tersebut memiliki rata-rata nilai minat yang berbeda. Oleh karena itu, dilakukanlah pengujian lanjutan untuk mengetahui rata-rata nilai minat mana saja yang berbeda. Pengujian tersebut dilakukan dengan mengambil 2 kelompok, lalu diuji.
Karena kasus di atas ada 3 kelompok, maka pengujian ini dilakukan sebanyak 3 kali, yaitu kelompok 1 (olahraga) dengan kelompok 2 (ilmiah), kelompok 2 (ilmiah) dengan kelompok 3 (keduanya) dan kelompok 1 (olahraga) dengan kelompok 3 (keduanya). Jika,

$$\left|\frac{R_i}{n_i} - \frac{R_j}{n_j}\right| \le Z_{\alpha/[k(k-1)]} \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

Maka kedua kelompok tersebut **tidak** memiliki perbedaan rata rata nilai yang signifikan

Dan jika,

$$\left|\frac{R_{i}}{n_{i}} - \frac{R_{j}}{n_{j}}\right| > Z_{1-\alpha/[k(k-1)]} \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{i}} + \frac{1}{n_{j}}\right)}$$

Pengerjaan dengan Menggunakan Unpad SAS

- Buka tabel contoh np_kinde_1
- Pilih menu Analyze->Nonparametric Test->K-Independent Samples
- Pilih variabel *Minat* untuk *grouping variables* dan variabel *Skor* untuk *test* variable seperti pada gambar di bawah ini.

			Test Var	iable List:	2010
			📶 [Sk	.or]	Exact
					Options
		•••			
			Grouping	g Variable:	
			[Minat]		
Test Type Kruskal-\ Jonckhe	∀allis H 	Median	1		
		6			

- Pilih/contreng *Kruskal-Wallis H* untuk *Test Type*.
- Klik **<OK>.** Setelah itu akan muncul luaran seperti gambar di bawah ini.

Nonparametric Test

Kruskal-Wallis

	Minat	N	Mean Ranks
	1,0000	5	4,40000
Skor	2,0000	5	7,40000
	3,0000	4	11,50000

Test	Statistics
df	

df	2
x ²	6,40571
$\chi^{2}(2; 0, 10)$	4,60517
χ ² (2; 0,05)	5,99146
$\chi^{2}(2; 0.01)$	9,21034

Advance Test

Dain	Test Value	Critical Values					
Pair	Test value	α=0,1	α=0,05	α=0,01			
1-2	3,0000	5,6304	6,3336	7,7662			
1-3	7,1000	5,9719	6,7178	8,2373			
2-3	4,1000	5,9719	6,7178	8,2373			

E. 2-RELATED SAMPLES

1. Uji Wilcoxon

Uji Wilcoxon dapat digunakan untuk menguji kasus 2 sampel yang berpasangan dengan variabel yang memiliki skala pengukuran ordinal.

Contoh Masalah

Seorang peneliti ingin mengetahui efek dari pelatihan terhadap motivasi berprestasi siswa SMA. Terdapat 12 orang siswa yang mengikuti pelatihan tersebut. Sebelum dan sesudah pelatihan, siswa tersebut mengisi kuesioner mengenai motivasi berprestasi.

Kuesioner ini terdiri dari 20 pernyataan dimana siswa harus memilih jawaban 1: Jika tidak setuju pada pernyataan, jawaban 2: Jika ragu-ragu terhadap pernyataan, dan jawaban 3: Jika setuju pada pernyataan yang diberikan.

Skor total dari 20 pertanyaan tersebut adalah sebagai berikut:

BELAJAR STATISTIKA DENGAN UNPAD SAS

No Siswa	Sebelum Pelatihan	Sesudah Pelatihan	No Siswa	Sebelum Pelatihan	Sesudah Pelatihan
1	22	44	7	30	44
2	28	32	8	29	21
3	18	24	9	20	36
4	26	38	10	44	42
5	20	44	11	18	36
6	19	29	12	35	55

Dengan taraf nyata 10%, 5%, dan 1% ujilah apakah terdapat perbedaan motivasi berprestasi siswa antara sebelum dan setelah pelatihan?

Pengerjaan Secara Manual

- 1. Rumuskan Hipotesis
 - H₀: Tidak terdapat perbedaan perbedaan motivasi berprestasi siswa antara sebelum dan setelah pelatihan
 - H₁: Terdapat perbedaan motivasi berprestasi siswa antara sebelum dan setelah pelatihan.
- 2. Statistik Uji
 - Hitunglah:
 - *N* = jumlah responden

Untuk contoh masalah di atas, N = 12

- Tetapkan:
 - V1 = Sebelum
 - V2 = Sesudah
- Buat tabel bantu dengan menambahkan variabel *D*, yang nilainya merupakan beda (selisih) dari V1 dengan V2.
 - D=V2-V1

n	V1	V2	D
1			:
Ν			

Untuk contoh masalah di atas adalah sebagai berikut.

n	Sebelum	Sesudah	D
1	22	44	22
2	28	32	4
3	18	24	6
4	26	38	12
5	20	44	24
6	19	29	10
7	30	44	14

n	Sebelum	Sesudah	D
8	29	21	-8
9	20	36	16
10	44	42	-2
11	18	36	18
12	35	55	20

 Tambahkan variabel *r* dan *R* terhadap tabel bantu tersebut. Lakukan peranking-an terhadap tabel bantu tersebut, berdasarkan variabel *D* tanpa mempertimbangkan nilai positip atau negatipnya, dan nilai ranking-nya ditetapkan terhadap variabel *r*.

Untuk contoh masalah di atas adalah sebagai berikut.

ID	V 1	V_2	D	r
10	44	42	-2	1
2	28	32	4	2
3	18	24	6	3
8	29	21	-8	4
6	19	29	10	5
4	26	38	12	6
7	30	44	14	7
9	20	36	16	8
11	18	36	18	9
12	35	55	20	10
1	22	44	22	11
5	20	44	24	12

Jumlahkan ranking yang memiliki perbedaan positif (*T*⁺) dan yang memiliki perbedaan negatif (*T*⁻)

Untuk contoh masalah di atas adalah:

•
$$T^+ = 73$$

•
$$T^{-} = 5$$

• Hitung *Z* dengan rumus:

$$Z = \frac{T^{+} - \frac{N(N+1)}{4}}{\sqrt{\frac{N(N+1)(2N+1)}{24}}}$$

Untuk contoh masalah di atas, perhitungannya adalah:

$$Z = \frac{73 - \frac{12(12+1)}{4}}{\sqrt{\frac{12(12+1)(2*12+1)}{24}}}$$
$$Z = \frac{73 - 39}{\sqrt{162,5}}$$

$$Z = \frac{34}{12,7476}$$

Z = 2,6672

• Cari Z_{tabel} untuk α=0,10, 0,05, dan 0,01 dari tabel distribusi normal.

$Z_{(0,10)} = 1,6448$	uji dua pihak
$Z_{(0,05)} = 1,9600$	uji dua pihak
$Z_{(0,01)} = 2,5760$	uji dua pihak
Z _(0,10) = 1,2816	uji satu pihak
Z _(0,05) = 1,6448	uji satu pihak
Z _(0,01) = 2,3263	uji satu pihak

3. Kriteria Uji

Kriteria uji, tolak H_0 jika nilai $Z > Z_{tabel}$.

Untuk contoh masalah di atas, dengan nilai α = 10%, 5%, maupun 1% maka H₀ = ditolak.

4. Kesimpulan

Dapat disimpulkan bahwa terdapat perbedaan motivasi beprestasi siswa antara sebelum pelatihan dan sesudah pelatihan.

Pengerjaan dengan Menggunakan Unpad SAS

- Buka tabel contoh np_2rel_1
- Pilih menu Analyze->Nonparametric Test->2-Related Samples
- Untuk pasangan 1 (*Pair 1*), pilih variabel *Sebelum* untuk *Variable1* dan variabel *Sesudah* untuk *Variable2* seperti pada gambar di bawah ini.

	Test Variable List:	
🔗 [Sebelum]	Pair Variable1 Variable2	Exact
🔗 [Sesudah]	1 [Sebelum] [Sesudah]	-
	2	Uptions
	mk	
		<₽
	Test Type	
	Vilcoxon 🗸	
	☐ Sign	
	🔲 McNemar	
	🔲 Marginal Homogeneity	
	22 22 22 22 22	

• Pilih/contreng *Wilcoxon* untuk *Test Type*.

 Z(0,05)
 1,9600
 2-tailed

 Z(0,01)
 2,5760
 2-tailed

 Z(0,10)
 1,2816
 1-tailed

 Z(0,05)
 1,6448
 1-tailed

 Z(0,01)
 2,3263
 1-tailed

• Klik **<OK>.** Setelah itu akan muncul luaran seperti gambar di bawah ini.

Nonp	arame	etric '	Test	
Wilco	xon Te	st		
Ranks				
Sesuda	ah-Sebelu	m N	Mean Rank	Sum of Ranks
Negative Ranks		2	2,50	5,00
Positive Ranks		10	7,30	73,00
Ties		0		
Total		12		
Test Sta	tistics		2	
Z		2,6672		
Z(0.10)	1,6448	2-tailed		

2. Uji McNemar

Uji McNemar dapat digunakan untuk menguji kasus 2 sampel yang berpasangan dengan variabel yang memiliki skala pengukuran nominal.

Contoh Masalah

Partai politik A mengadakan kampanye yang dihadiri oleh 75 orang peserta. Sebelum dilakukan kampanye panitia mengadakan penelitian mengenai pilihan peserta terhadap partai politik A. Setelah diadakan kampanye panitia kembali mengambil data untuk melihat pilihan peserta terhadap partai politik A kembali.

ID	Sebelum	Sesudah	ID	Sebelum	Sesudah	ID	Sebelum	Sesudah
1	1	0	26	1	1	51	0	0
2	1	0	27	1	1	52	0	0
3	1	0	28	1	1	53	0	0
4	1	0	29	1	1	54	0	0
5	1	0	30	1	1	55	0	0
6	1	0	31	1	1	56	0	0
7	1	0	32	1	1	57	0	0
8	1	0	33	1	1	58	0	0
9	1	0	34	1	1	59	0	1

BELAJAR STATISTIKA DENGAN UNPAD SAS

ID	Sebelum	Sesudah	ID	Sebelum	Sesudah	ID	Sebelum	Sesudah
10	1	0	35	1	1	60	0	1
11	1	0	36	1	1	61	1	1
12	1	0	37	0	0	62	1	1
13	1	0	38	0	0	63	1	1
14	1	1	39	0	0	64	1	1
15	1	1	40	0	0	65	1	1
16	1	1	41	0	0	66	0	0
17	1	1	42	0	0	67	0	0
18	1	1	43	0	0	68	0	0
19	1	1	44	0	0	69	0	0
20	1	1	45	0	0	70	0	0
21	1	1	46	0	0	71	0	1
22	1	1	47	0	0	72	0	1
23	1	1	48	0	0	73	0	1
24	1	1	49	0	0	74	0	1
25	1	1	50	0	0	75	0	1

Keterangan :

1 = Memilih, 0 = Tidak Memilih

Dengan taraf nyata 10%, 5%, dan 1% ujilah apakah terdapat perbedaan pilihan peserta terhadap partai politik A?

Penyelesaian Secara Manual

- 1. Rumuskan Hipotesis
 - H₀: Tidak ada perbedaan pilihan peserta terhadap partai politik A baik sebelum ataupun sesudah kampanye
 - H₁: Terdapat perbedaan pilihan peserta terhadap partai politik A baik sebelum ataupun sesudah kampanye
- 2. Statistik Uji
 - Hitunglah:
 - *N* = jumlah responden
 - *k* = jumlah kategori
 - df = k-1

Untuk contoh masalah di atas, N = 75, k = 2, dan df = 1;

- Tetapkan:
 - V1 = Sebelum
 - V2 = Sesudah
- Buat tabel kontingensi 2 x 2 untuk pasangan *V1-V2*:

Va	V	′ 2
VI	1	2
1	С	D
2	A	В

- *A* adalah subjek dimana sebelum perlakuan responden memilih pilihan 2 dan sesudah perlakuan memilih pilihan 1.
- *D* adalah subjek dimana sebelum perlakuan responden memilih pilihan 1 dan sesudah perlakukan memilih pilihan 2, sedangkan
- *B* dan *C* adalah subjek yang tidak mengalami perubahan respon sebelum dan sesudah perlakuan.

Untuk contoh masalah di atas, tabel kontingensinya adalah:

Sabalum	Sesudah			
Sebeluin	Tidak Memilih	Memilih		
Tidak Memilih	27	7		
Memilih	13	28		

Hitunglah χ² dengan rumus di bawah ini :

$$\chi^2 = \frac{(|A - D| - 1)^2}{A + D}$$

Untuk contoh masalah di atas, perhitungannya adalah:

$$\chi^{2} = \frac{(|13 - 7| - 1)^{2}}{13 + 7}$$
$$\chi^{2} = \frac{5^{2}}{20} = 1,25$$

• Cari χ^2_{tabel} untuk *df* dan α = 0,10, 0,05, dan 0,01 dari *tabel chi-square*. Untuk contoh masalah di atas, *df* = 1, maka nilai χ^2_{tabel} untuk α = 0,10, 0,05, dan 0,01 adalah:

 $\chi^{2}_{(1;\,0,10)} = 2,70554$

 $\chi^{2}_{(1;\,0,05)} = 3,84146$

$$\chi^{2}_{(1; 0,01)} = 6,6349$$

3. Kriteria Uji

Kriteria uji tolak H₀ jika $\chi^2 > \chi^2_{tabel}$.

Untuk contoh masalah di atas, dengan nilai α = 10%, 5%, maupun 1% maka H₀ = diterima.

4. Kesimpulan

Dapat disimpulkan bahwa "tidak ada perbedaan pilihan peserta terhadap partai politik A baik sebelum ataupun sesudah kampanye".

Pengerjaan dengan Menggunakan Unpad SAS

- Buka tabel contoh np_2rel_3
- Pilih menu Analyze->Nonparametric Test->2-Related Samples
- Untuk pasangan (*Pair 1*), pilih variabel *Sebelum* untuk *Variabel1* dan variabel *Sesudah* untuk *Variable2* seperti pada gambar di bawah ini.

		Test V	ariable List:			
[Sebelum	1	Pair	Variable1	Variable2		Exact
[Sesudah]	1	[Sebelum]	[Sesudah]	=	
		2			1	Options
		••••			4	
			- 2010			
		_ Test	Туре			
			Wilcoxon			
		E 1	Gign			
		। ज	McNemar			
			Marginal Homo	jeneity		
			arr e nari dana			
	1.	1		1		
		Deast	Canool	Help		

- Pilih/contreng *McNemar* untuk *Test Type*.
- Klik **<OK>**. Setelah itu akan muncul luaran seperti gambar di bawah ini.

Nonparametric Test

McNemar Test

	Sesudah				
Sebelum	Tidak memilih	Memilih			
Tidak memilih	27	7			
Memilih	13	28			

Statistics Test

	Sebelum & Sesudah
N	75
df	1
χ ²	1,2500
χ ² (1; 0,10)	2,7055
χ ² (1; 0,05)	3,8415
χ ² (1; 0,01)	6,6349

F. K-RELATED SAMPLES

1. Uji Friedman

Uji Friedman adalah uji digunakan untuk membandingkan skor (nilai pengamatan) dari *k* sampel atau kondisi yang berpasangan (banyaknya pengamatan setiap sampel atau kondisi sama) dimana perlakuan yang diterapkan terhadap obyek lebih dari 2 kali.

Uji ini sama dengan 2 *ways anova pada statistic parametric* dan digunakan pada data dengan skala ordinal.

Dilakukan ranking (peringkat) terhadap seluruh perlakuan/kondisi pada setiap responden.

Contoh Masalah

Dilakukan sebuah penelitian pada 15 responden tentang perbedaan 3 shift kerja terhadap kinerja perawat sebuah RS Swasta di Jakarta.

Berikut data yang diperoleh:

ID	Shift 1	Shift 2	Shift 3
1	76	70	75
2	71	65	77
3	56	57	74
4	67	60	59
5	70	56	76
6	77	71	73
7	45	47	78
8	60	67	62
9	63	60	75
10	60	59	74
11	61	57	60
12	56	60	75
13	59	54	70
14	74	72	71
15	66	63	65

Pengerjaan Secara Manual

- 1. Rumuskan hipotesis.
 - H₀: Tidak ada perbedaan kinerja perawat pada masing-masing shift kerja
 - H₁: Ada perbedaan kinerja perawat pada masing-masing shift kerja
- 2. Lakukan ranking pada nilai yang diperoleh masing-masing responden pada semua shift kerja.

Ranking ditentukan berdasarkan banyaknya *k* dari responden 1 dalam semua perlakuan/kondisi. Misal: responden 1 mendapat nilai kinerja pada shift 1, 2, dan 3 masing-masing 76, 70 dan 75. Maka ranking-nya ditentukan berdasarkan nilai terkecil, yaitu 70, 75, dan 76 masing-masing peringkat 1, 2, dan 3. Hasilnya seperti pada tabel berikut ini.

ID	V ₁		V _k	SR₁		SR₃
1	76	70	75	3	1	2
2	71	65	77	2	1	3
3	56	57	74	1	2	3
4	67	60	59	3	2	1
5	70	56	76	2	1	3
6	77	71	73	3	1	2
7	45	47	78	1	2	3
8	60	67	62	1	3	2
9	63	60	75	2	1	3
10	60	59	74	2	1	3
11	61	57	60	3	1	2
12	56	60	75	1	2	3
13	59	54	70	2	1	3
14	74	72	71	3	2	1
15	66	63	65	3	1	2
Jumlah	961	918	1064	32	22	36
				R ₁		Rk

3. Hitung dengan rumus uji Friedman.

$$\chi^{2} = \left[\frac{12}{nk \ (k+1)} \left(\sum R_{j}^{2}\right)\right] - 3n \ (k+1)$$

Untuk contoh masalah di atas hasilnya adalah sebagai berikut.

$$\chi^{2} = \left[\frac{12}{(15)(3)(3+1)}((32^{2}+22^{2}+36^{2})\right] - 3(15)(3+1)$$

$$\chi^{2} = \frac{12}{180}(2804) - 180$$

$$\chi^{2} = 186,93 - 180$$

$$\chi^{2} = 6,93$$

Jadi, diperoleh nilai χ^2 adalah 6,93.

4. Kriteria uji

Terima H₀ jika $\chi^2 \le \chi^2_{(df; \alpha)}$ Tolak H₀ jika $\chi^2 \ge \chi^2_{(df; \alpha)}$ Dengan α = taraf signifikan (taraf nyata) dan df (*degree of freedom*) = k-1

5. Kesimpulan

Dengan df = k-1 = 3-1=2, pada $\alpha = 0,05$ dan *CI (confidence interval)* 95%, maka nilai *chi square* pada tabel adalah = 5,59. Ternyata nilai $\chi^2 >$ nilai χ^2 tabel, yaitu 6,93 > 5,59, maka H₀ ditolak. Artinya, ada perbedaan kinerja perawat pada masing-masing shift kerja.

Pengerjaan Dengan Menggunakan Unpad SAS

- Buka tabel contoh np_krel_1
- Pilih menu Analyze->Nonparametric Test->K-Related Samples
- Pilih variabel *S1, S2,* dan *S3* untuk *test variables* seperti pada gambar di bawah ini.

		Test Variable List:	
	mÞ	II Shift 1 [S1] II Shift 2 [S2] II Shift 3 [S3]	Exact

- Pilih/contreng *Friedman* untuk *Test Type*.
- Klik **<OK>.** Setelah itu akan muncul luaran seperti gambar di bawah ini.

Nonparametric Test

Friedman

Ranl	KS
	Mean Ranks
S1	2,13333
S2	1,46667
S 3	2,40000

Test Statistics

N	15
df	2
x ²	6,93333
χ ² (2; 0,10)	4,60517
χ ² (2; 0,05)	5,99146
χ ² (2; 0,01)	9,21034

Advance Test

Derin	T-tV-l-	Cri	itical Valu	ies
Pair	lest value	α=0,1	α=0,05	α=0,01
1-2	10,0000	11,6560	13,1119	16,0775
1-3	4,0000	11,6560	13,1119	16,0775
2-3	14,0000	11,6560	13,1119	16,0775

2. Uji Q Cochran

Uji Q Cochran dapat digunakan untuk menguji kasuk k sampel yang berpasangan dengan variabel yang memiliki skala pengukuran nominal. Adapun uji Friedman dapat digunakan untuk menguji kasus k sampel yang berpasangan dengan variabel yang memiliki skala pengukuran ordinal.

Contoh Masalah

Untuk mengetahui selera konsumen di kota Bandung, Manajer Pemasaran DUTA MAKMUR mengambil sampel 12 orang di kota tersebut yang pernah mengkonsumsi roti produksi DUTA MAKMUR, yaitu roti rasa coklat, nanas, kacang, dan durian. Kepada 12 responden tersebut diberi hanya 2 alternatif pendapat, yakni suka atau tidak suka terhadap masing masing rasa roti tersebut.

Berikut ini adalah data sikap responden: Tabel [np_krel_3]

Kanauman		Ra	isa	
Konsumen	Coklat	Nanas	Kacang	Durian
1	Tidak suka	Suka	Tidak suka	Tidak suka
2	Tidak suka	Tidak suka	Suka	Suka
3	Tidak suka	Suka	Tidak suka	Tidak suka
4	Tidak suka	Suka	Tidak suka	Tidak suka
5	Suka	Tidak suka	Suka	Suka
6	Suka	Suka	Tidak suka	Tidak suka
7	Suka	Suka	Tidak suka	Suka
8	Tidak suka	Tidak suka	Tidak suka	Suka
9	Suka	Suka	Suka	Tidak suka
10	Tidak suka	Suka	Tidak suka	Suka
11	Suka	Suka	Suka	Suka
12	Tidak suka	Suka	Tidak suka	Suka

Pengerjaan Secara Manual

- 1. Rumuskan hipotesis.
 - H₀: Tidak ada perbedaan sikap konsumen terhadap keempat rasa roti DUTA MAKMUR.
 - H₁: Ada perbedaan sikap konsumen terhadap keempat rasa roti DUTA MAKMUR.
- 2. Statistik Uji
 - Ubah kategori respon untuk contoh masalah di atas, yaitu 0 untuk "tidak suka" dan 1 untuk "suka", sehingga tabel contoh masalah di atas menjadi:

ID	Coklat	Nanas	Kacang	Durian
1	0	1	0	0
2	0	0	1	1
3	0	1	0	0
4	0	1	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	0	1
8	0	0	0	1
9	1	1	1	0
10	0	1	0	1
11	1	1	1	1
12	0	1	0	1

Buat tabel dengan variabel sebanyak k buah

ID	V1	 Vk
1		
Ν		

- N =jumlah data
- k = jumlah variabel yang akan diolah
- df = k 1
- V_1 .. V_k = variabel pertama sampai variabel ke-k

Untuk contoh masalah di atas:

- *N* = 12
- *k* = 4
- df = 3
- V1 = Coklat
- V2 = Nanas
- *V3* = Kacang
- V4 = Durian

Sehingga tabelnya adalah sebagai berikut.

ID	V1	V2	V3	V4
1	0	1	0	0
2	0	0	1	1
3	0	1	0	0
4	0	1	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	0	1
8	0	0	0	1
9	1	1	1	0
10	0	1	0	1
11	1	1	1	1
12	0	1	0	1

• Hitung jumlah skor 1 pada setiap baris untuk L1 dan kuadrat dari jumlah skor 1 pada setiap baris untuk L1², yaitu seperti berikut.

ID	V1	V2	V3	V4	L1	L12
1	0	1	0	0	1	1
2	0	0	1	1	2	4
3	0	1	0	0	1	1
4	0	1	0	0	1	1
5	1	0	1	1	3	9
6	1	1	0	0	2	4
7	1	1	0	1	3	9
8	0	0	0	1	1	1
9	1	1	1	0	3	9
10	0	1	0	1	2	4
11	1	1	1	1	4	16
12	0	1	0	1	2	4

ID	V ₁	V2		V _k	L ₁	L ₁ ²
1	0	1	0	0	1	1
2	0	0	1	1	2	4
3	0	1	0	0	1	1
4	0	1	0	0	1	1
5	1	0	1	1	3	9
6	1	1	0	0	2	4
7	1	1	0	1	3	9
8	0	0	0	1	1	1
9	1	1	1	0	3	9
10	0	1	0	1	2	4
11	1	1	1	1	4	16
12	0	1	0	1	2	4
Total	5	9	4	7	25	63
	G1	G ₂		Gĸ		

Hitung jumlah skor 1 pada setiap kolom sebagai berikut.

Hitung dengan rumus Q–Cochran

$$Q = (k - 1) \frac{\left[k \sum G_{j}^{2} - (\sum G_{j})^{2}\right]}{k \sum L_{i} - \sum L_{i}^{2}}$$

Untuk contoh masalah di atas adalah sebagai berikut.

$$Q = (4-1) \frac{[4(5^2+9^2+4^2+7^2)-(5+9+4+7)^2]}{4(25)-63}$$
$$Q = 3 \frac{[4(171)-625]}{100-63}$$
$$Q = 3 \frac{59}{37}$$
$$Q = 4,78$$

• Cari χ^{2}_{tabel} untuk *df* dan α = 0,10, 0,05, dan 0,01 dari *tabel chi-square*. Untuk contoh masalah di atas, *df* = 3, maka nilai χ^{2}_{tabel} untuk α = 0,10, 0,05, dan 0,01 adalah:

$$\begin{split} \chi^2{}_{(3;\,0,10)} &= 6,25139 \\ \chi^2{}_{(3;\,0,05)} &= 7,81473 \\ \chi^2{}_{(3;\,0,01)} &= 11,34487 \end{split}$$

3. Kriteria uji

Kriteria uji, tolak H_0 jika $Q \ge \chi^2_{tabel}$

Untuk contoh masalah di atas, dengan nilai α = 10%, 5%, maupun 1% maka H₀ = diterima.

4. Kesimpulan

Karena nilai Q = $4,78 \le 7,81$, maka H₀ diterima. Artinya, tidak ada perbedaan sikap konsumen terhadap keempat rasa roti DUTA MAKMUR.

Pengerjaan Dengan Menggunakan Unpad SAS

- Buka tabel contoh np_krel_3
- Pilih menu Analyze->Nonparametric Test->K-Related Samples
- Pilih variabel *Coklat, Nanas, Kacang,* dan *Durian* untuk *test variables* seperti pada gambar di bawah ini.

		1 Ost 7 di			
		Ras	a Coklat [Coklat	1	Exact
		Ras Bas	a Nanas (Nanas a Kacang (Kaca a Durian (Durian	ing]	Options
		•••	a Dunari (Dunar	IJ	
est Type Friedman	∏ Kendali'	sW 🔽 Cohran	's Q		

- Pilih/contreng *Cohran Q* untuk *Test Type*.
- Klik <**OK>.** Setelah itu akan muncul luaran seperti gambar di bawah ini.

Nonparametric Test

Cochran's Q

Frequenci	es Valu	ıe
	0	1
Coklat	7	5
Nanas	3	9
Kacang	8	4
Durian	5	7

Test Statistics

N	12
df	3
Cochran's Q	4,7838
χ ² (3; 0,10)	6,2514
χ ² (3; 0,05)	7,8147
χ ² (3; 0,01)	11,3449

5 Uji Korelasi

A. UJI JASPEN'S M

Jaspen's M (atau *Jaspen's coefficient of multiserial association*) digunakan untuk mengukur hubungan variabel dengan skala ordinal dan variabel dengan skala interval. Metode ini memungkinkan peneliti untuk memaksimalkan tingkat pengukuran bagi kedua jenis variabel.

Untuk melakukan pengujian dengan tepat, maka kita harus memenuhi beberapa asumsi. Pertama, pastikan distribusi data bersifat acak. Lalu jenis skala yang digunakan bersifat ordinal dan interval. Variabel yang bersifat ordinal harus dibuat "normal" atau "terstandar" sehingga dapat diasumsikan bahwa jarak antara setiap unit dalam skala ordinal memiliki jarak yang sama. Hal ini yang menjadi dasar untuk menentukan ordinat untuk *ranking* pada tabel distribusi normal. Selain itu, variabel interval diasumsikan memiliki distribusi normal.

Contoh Masalah

Suatu penelitian dilakukan untuk melihat hubungan antara tingkat pendidikan dengan penghasilan karyawan di suatu perusahaan. Data yang dihasilkan dari pengukuran terhadap 50 karyawan di perusahaan tersebut dapat dilihat pada tabel berikut ini:

Nomor Responden	Pendidikan	Penghasilan
1	4	95
2	3	50
3	4	80
4	2	34
5	2	30
6	1	20
7	3	52
8	2	40
9	3	58
10	1	18

Nomor Responden	Pendidikan	Penghasilan
26	3	45
27	1	25
28	4	95
29	3	52
30	1	30
31	3	55
32	3	52
33	3	60
34	2	32
35	3	65

BELAJAR STATISTIKA DENGAN UNPAD SAS

Nomor Responden	Pendidikan	Penghasilan	Nomor Responden	Pendidikan	Penghasilan
11	2	35	36	3	49
12	3	55	37	4	75
13	1	24	38	2	37
14	3	50	39	4	80
15	1	30	40	4	75
16	2	40	41	3	52
17	4	80	42	4	100
18	1	20	43	3	60
19	3	49	44	4	85
20	3	58	45	1	28
21	3	45	46	4	90
22	3	55	47	4	85
23	2	28	48	3	48
24	4	85	49	2	30
25	3	50	50	2	38

Pengerjaan Secara Manual

- 1. Tentukan hipotesis. Rumuskan H₀ dan H₁ seperti dibawah ini.
 - H₀: tidak terdapat hubungan yang signifikan antara tingkat pendidikan dengan penghasilan karyawan di suatu perusahaan
 - H₁: terdapat hubungan yang signifikan antara tingkat pendidikan dengan penghasilan karyawan di suatu perusahaan
- 2. Statistik Uji
 - Tetapkan variabel yang akan diuji.
 - X = Pendidikan
 - *Y* = *Penghasilan*

ID	Х	Y
1		
:		
Ν	:	

Hitung nilai standar error

Untuk menghitung nilai Jaspen's M, kita harus mengetahui nilai *standar error* dari variabel Y dengan rumus sebagai berikut.

$$S_{\mathcal{Y}} = \sqrt{\frac{\sum Y^2 - \frac{(\sum Y)^2}{N_r}}{N_r}}$$

Dimana:

 S_y = Standard error of Y

 $\sum Y =$ Jumlah nilai Y $\sum Y^2 =$ Jumlah nilai Y kuadrat $N_r =$ Jumlah sampel

Dalam kasus di atas, penghitungannya adalah seperti ini.

$$S_y = \sqrt{\frac{161.886 - \frac{(2.624)^2}{50}}{50}}$$
$$S_y = \sqrt{\frac{24.178,48}{50}}$$
$$S_y = 21,990$$

 Buatlah sebuah tabel bantu berdasarkan kategori variabel X, yang diurut dari nilai besar ke kecil, yang berisi kolom-kolom sebagai berikut.

i	Ŧ	р	Cp	0 _b	0 _a	$\boldsymbol{O}_{b}-\boldsymbol{O}_{a}$	$\frac{(\boldsymbol{O}_b - \boldsymbol{O}_a)^2}{p}$	$\bar{Y}(\boldsymbol{0}_{\boldsymbol{b}}-\boldsymbol{0}_{\boldsymbol{a}})$
k								
1								
	$\sum \bar{Y}$						$\sum \frac{(O_b - O_a)^2}{p}$	$\sum \bar{Y}(\boldsymbol{O}_{\boldsymbol{b}} - \boldsymbol{O}_{\boldsymbol{a}})$

Keterangan:

- \overline{Y} Rata-rata variabel Y
- *p* Proporsi jumlah sampel kelompok \overline{Y}_i . (P=n/N)
- C_p Kumulatif proporsi jumlah sampel kelompok \overline{Y}_i .
- *O_b* Ordinat dari tabel distribusi normal untuk proporsi kelompok *i*
- O_a Ordinat di atas pada kolom O_b

Untuk contoh masalah di atas, tabel bantu tersebut adalah:

i	Ŧ	р	Cp	0 _b	0 _a	$\boldsymbol{O}_b - \boldsymbol{O}_a$	$\frac{(\boldsymbol{0}_b-\boldsymbol{0}_a)^2}{p}$	$\bar{Y}(\boldsymbol{0}_{b}-\boldsymbol{0}_{a})$
4	85,4167	0,24	0,24	0,3109	0,0000	0,3109	0,4027	26,5560
3	53,0000	0,40	0,64	0,3741	0,3109	0,0632	0,0099	3,3496
2	34,4000	0,20	0,84	0,2433	0,3741	-0,1308	0,0855	-4,4995
1	24,3750	0,16	1,00	0,0000	0,2433	-0,2433	0,3699	-5,9304
	197,1917						0,8680	19,4757

• Hitung koefisien Jaspen (M) dengan rumus berikut.

$$M = \frac{\sum (\bar{Y}_i)(O_b - O_a)}{S_y \sum \left[\frac{(O_b - O_a)^2}{p}\right]}$$

Setelah membuat tabel di atas, kemudian hitunglah menggunakan rumus Jaspen.

$$M = \frac{19,4757}{(21,990)(0,868)}$$
$$M = 1,0193$$

 Hitung signifikansi statistik dari Jaspen's M Untuk mengetahui signifikansi statistik dari Jaspen's M, kita harus mengubah nilai M menjadi koefisien yang setara dengan Pearson's r. Dengan rumus berikut :

$$r = M \sqrt{\sum \left[\frac{(O_b - O_a)^2}{p}\right]}$$

Untuk contoh masalah di atas adalah:

$$r = 1,0193\sqrt{0,868}$$

r = 0,9496

• Cari r_{tabel} untuk $df = N_r - 2 \text{ dan } \alpha = 0,10, 0,05, \text{ dan } 0,01 \text{ dari } tabel r.$ Untuk contoh masalah di atas, df = 48, maka nilai r_{tabel} untuk $\alpha = 0,10$, 0,05, dan 0,01 adalah:

 $r_{(48; 0,10)} = 0,2310$ $r_{(48; 0,05)} = 0,2730$ $r_{(48; 0,01)} = 0,3540$

3. Kriteria Uji (Daerah Kritis)

Dengan menggunakan rumus *degrees of freedom*, $df = N_T - 2$. Carilah nilai kritis pada tabel Distribusi R.

Jika nilai r lebih besar dari nilai kritis yang didapat, maka koefisien korelasi yang didapat signifikan secara statistik dan H₀ dapat ditolak.

4. Kesimpulan

Kesimpulannya adalah H_0 ditolak, artinya terdapat hubungan yang signifikan antara tingkat pendidikan dengan penghasilan karyawan di suatu perusahaan

Pengerjaan dengan UNPAD SAS

- Buka tabel contoh cor_jaspen
- Pilih menu Analyze->Correlate->Jaspen's M Analysis

• Pilih variabel *Pendidikan* untuk *Variable 1* dan *Penghasilan* untuk *Variable 2*, yaitu seperti pada gambar di bawah ini.

			Variable 1:		
		m)>	🚚 [Pendidika	n]	
			Variable 2:	12	
			Penghasi	anj	
1	OK	1 0	Cancel	Help	

• Klik **<OK>.** Setelah itu akan muncul luaran seperti gambar di bawah ini.

Correlation Analysis

Jaspen's M

Data source: cor_jaspen Variables: Pendidikan, Penghasilan

Dan di dilaan	Penghasilan							
Pendidikan	Mean	р	Cp	Ob	0 _a			
[4]	85,4167	0,2400	0,2400	0,3108	0,0000			
[3]	53,0000	0,4000	0,6400	0,3740	0,3108			
[2]	34,4000	0,2000	0,8400	0,2433	0,3740			
[1]	24,3750	0,1600	1,0000	0,0000	0,2433			

Sy	21,9902
М	1,0203
r	0,9505
r(0,01)	0,3540
r(0,05)	0,2730

B. UJI ETA

Uji Eta digunakan untuk menghitung hubungan variabel dengan skala nominal dan variabel dengan skala interval.

Untuk melakukan pengujian dengan tepat, maka kita harus memenuhi beberapa asumsi. Pertama, pastikan distribusi data bersifat acak. Lalu jenis skala yang digunakan bersifat nominal dan interval. Selain itu, variabel interval diasumsikan memiliki distribusi normal.

Contoh Masalah

Sebuah penelitian dilakukan untuk mengetahui faktor-faktor yang berpengaruh terhadap jumlah kosakata Bahasa Inggris yang dipelajari oleh anak usia 8 tahun di Bandung. Berikut hasil penelitian tersebut:

No	lonic	Tingkat	Status	Lama Belajar	Jumlah
Subjek	Kolomin	Pendidikan	Sosial Ekonomi	Bahasa Inggris	kosakata baru
Subjek	Reiditiiti	lbu	Orang Tua	(bulan)	Bahasa Inggris
1	1	1	1	1	20
2	2	1	1	2	25
3	1	1	2	3	30
4	1	1	3	4	54
5	1	1	3	5	21
6	2	2	1	6	25
7	2	2	1	4	23
8	1	2	1	3	45
9	2	2	2	5	32
10	1	2	2	7	43
11	1	2	2	6	12
12	1	2	3	4	43
13	2	2	3	3	21
14	2	2	3	8	45
15	2	2	3	9	32
16	2	3	1	7	12
17	2	3	1	6	10
18	1	3	1	3	20
19	2	3	1	4	31
20	1	3	2	5	23
21	2	3	2	6	43
22	1	3	2	7	21
23	2	3	2	8	43
24	1	3	2	3	23
25	2	3	3	1	87
26	1	3	3	2	32
27	2	3	3	5	12
28	1	3	3	4	34
29	2	3	3	3	32
30	2	3	3	3	30

Keterangan:

Jenis Kelamin: 1 = Laki-laki; 2 = Perempuan

Pendidikan Ibu: 1 = SLA; 2 = D3; 3 = S1

Status Sosial Ekonomi: 1 = Rendah; 2 = Sedang ; 3= Tinggi

Dengan taraf kepercayaan 95%, jawablah persoalan berikut ini:

- 1. Hitunglah besarnya hubungan antara jenis kelamin anak dengan jumlah kosakata baru! (jawaban akan dibahasa pada Bagian B Uji Eta)
- 2. Hitunglah besarnya hubungan antara jenis kelamin anak dengan tingkat pendidikan ibu! (jawaban akan dibahasa pada Bagian C Uji Theta)

Penghitungan uji Eta secara manual

- 1. Tentukan hipotesis. Rumuskan H₀ dan H₁ seperti dibawah ini.
 - H₀: tidak terdapat hubungan yang signifikan antara jenis kelamin dengan jumlah kosakata baru
 - H₁: terdapat hubungan yang signifikan antara jenis kelamin dengan jumlah kosakata baru
- 2. Hitung dengan rumus korelasi Eta.
 - Selanjutnya adalah penghitungan rumus korelasi Eta dengan menggunakan rumus di bawah ini.

$$\eta = \sqrt{1 - \frac{\sum Y_T^2 - (N_1)(\bar{Y}_1)^2 - (N_2)(\bar{Y}_2)^2}{\sum Y_T^2 - (N_1 + N_2)(\bar{Y}_T)^2}}$$

Keterangan:

 N_1 dan N_2 adalah Jumlah sampel

 \overline{Y}_T adalah total dari rata-rata kelompok 1 dan 2 yang digabungkan

 $\overline{Y_1}, \overline{Y_2}$ adalah rata-rata dari kelompok 1 dan 2

 $\Sigma Y_{T}{}^{2}$ adalah jumlah kuadrat dari setiap skor dari kedua sampel

Untuk mempermudah pengerjaan ini, buatlah tabel sebagai berikut

Laki-laki	\overline{Y}_1	Perempuan	\overline{Y}_2
20	400	25	625
30	900	25	625
54	2.916	23	529
21	441	32	1024
45	2.025	21	441
43	1.849	45	2.025
12	144	32	1.024
43	1.849	12	144
20	400	10	100
23	529	31	961
21	441	43	1.849
23	529	43	1.849
32	1.024	87	7.569
34	1.156	12	144

BELAJAR STATISTIKA DENGAN UNPAD SAS

r-

Laki-laki	\bar{Y}_1	Perempuan	\overline{Y}_2
		32	1.024
		30	900
421	1.043	503	1.302

Setelah membuat tabel di atas, kemudian hitunglah menggunakan rumus korelasi Eta

$$\begin{split} \eta &= \sqrt{1 - \frac{\sum Y_T^2 - (N_1)(\bar{Y}_1)^2 - (N_2)(\bar{Y}_2)^2}{\sum Y_T^2 - (N_1 + N_2)(\bar{Y}_T)^2}} \\ \eta &= \sqrt{1 - \frac{2345 - (14)(30)^2 - (16)(31,4)^2}{2345 - (14 + 16)(30,8)^2}} \\ \eta &= \sqrt{1 - \frac{2345 - 12600 - 15775,36}{2345 - 28459,2}} \\ \eta &= \sqrt{1 - \frac{-26030,36}{-26114,2}} \\ \eta &= \sqrt{1 - 0,9956} \\ \eta &= 0,0566 \end{split}$$

3. Hitung uji signifikansi.

Setelah mendapatkan nilai korelasi eta, hitung signifikansi dengan rumus F di berikut ini.

$$F = \frac{\eta^2 (N - k)}{(1 - \eta^2) (k - 1)}$$

$$F = \frac{(0,0566)^2 (30 - 2)}{(1 - (0,0566)^2) (2 - 1)}$$

$$F = \frac{0,0032(28)}{0,9968(1)}$$

$$F = \frac{0,0896}{0,9968}$$

$$F = 0,0898$$

4. Kriteria Uji (Daerah Kritis)

Carilah nilai F table dengan df atas (K-1) dan df bawah (N-1). Jika F_{hitung} > F_{tabel} maka H₀ ditolak. Nilai F hitung lebih kecil daripada F_{table} maka H₀ diterima.

5. Kesimpulan

Kesimpulannya adalah H₀ diterima, artinya tidak terdapat hubungan yang signifikan antara jenis kelamin dengan jumlah kosakata baru.

Pengerjaan dengan Unpad SAS

- Buka tabel contoh cor_eta
- Pilih menu Analyze->Correlate->Eta
- Pilih variabel *JK* untuk *Variable 1* dan *JKKB* untuk *Variable 2*, yaitu seperti pada gambar di bawah ini.

		Variable 1:
d Tingkat Pendidikan Ibu d Status Sosial Ekonomi O	m	😞 Jenis Kelamin [JK]
	•••	Variable 2: Ø Jumlah Kosakata Baru B
OK		Cancel Help

• Klik **<OK>**. Setelah itu akan muncul luaran seperti gambar di bawah ini.

Correlation Analysis

Eta

Data source: cor_eta Variables: JK, JKKB

Test Statistics

			JKKB	
јк	N	Value	Value ²	Mean
Laki-laki	14	421	14.603	30,0714
Perempuan	16	503	20.833	31,4375
Total	30	924	35.436	

Eta	0,0447
F	0,0560
F(0,01)	7,6360
F(0,05)	4,1960

C. UJI THETA

Uji Theta digunakan untuk menghitung hubungan variabel dengan skala nominal dan variabel dengan skala ordinal.

Penghitungan uji Eta secara manual

Untuk melakukan pengujian dengan tepat, maka kita harus memenuhi beberapa asumsi. Pertama, pastikan distribusi data bersifat acak. Lalu jenis skala yang digunakan bersifat nominal dan ordinal. Selain itu, variabel interval diasumsikan memiliki distribusi normal.

Berikut ini adalah langkah pengerjaan soal di atas.

- 1. Tentukan hipotesis. Rumuskan H_0 dan H_1 seperti dibawah ini.
 - H₀: tidak terdapat hubungan yang signifikan antara jenis kelamin anak dengan tingkat pendidikan ibu
 - H₁: terdapat hubungan yang signifikan antara jenis kelamin anak dengan tingkat pendidikan ibu
- 2. Hitung dengan rumus korelasi Tetha.
 - Selanjutnya adalah penghitungan rumus korelasi Tetha dengan menggunakan rumus di bawah ini.

$$\theta = \frac{\sum D_i}{T_2}$$

dengan

$\sum D_i = fa - j $	fb				
	Jenis Kelamin	1	2	3	Jumlah
	1	4	4	6	14
	2	1	6	9	16
	Jumlah	5	10	15	30

$$F_{a} = 4(0) + 4(1) + 6(1+6)$$

$$F_{a} = 4 + 42$$

$$F_{a} = 46$$

$$F_{b} = 4(6+9) + 4(9) + 6(0)$$

$$F_{b} = 60 + 36$$

$$F_{b} = 96$$

$$\sum Di = |fa - fb| = |46 - 96| = 50$$

$$\theta = \frac{\sum Di}{T^{2}}$$

$$\theta = \frac{50}{14 \times 16}$$

$$\theta = \frac{50}{224}$$

$$\theta = 0,2232$$

3. Pada korelasi theta, tidak terdapat uji signifikansinya sehingga hasil perhitungan korelasi tetha langsung dibandingkan dengan kriteria Guilford.

Bandingkan nilai Theta dengan kriteria Guilford di bawah ini:

Nilai	Kriteria Gullford
< 0,20	tidak ada korelasi
0,20-<0,40	korelasi rendah
0,40-<0,70	korelasi sedang
0,70-<0,90	korelasi tinggi
0,90-<1,00	korelasi tinggi sekali
1,00	korelasi sempurna

Catatan: Kriteria Guilford dapat digunakan semua analisis korelasi. Jika suatu variabel dikatakan telah berhubungan secara signifikan, maka kekuatan dari hubungan tersebut dapat diinterpretasi menggunakan kriteria Guliford. 4. Kesimpulan

Berdasarkan Analisis Statistik Korelasi Theta, didapatkan bahwa r = 0,2232. Hal ini menandakan bahwa terdapat hubungan yang rendah antara jenis kelamin anak dengan tingkat pendidikan ibu.

Pengerjaan dengan Unpad SAS

- Buka tabel contoh *cor_eta*
- Pilih menu Analyze->Correlate->Eta
- Pilih variabel *JK* untuk *Variable 1* dan *JPI* untuk *Variable 2*, yaitu seperti pada gambar di bawah ini.

ariable List:		Variable 1:
11 Status Sosial Ekonomi O Sona Belajar Bahasa Ing Soumlah Kosakata Baru B	m)	🗞 Jenis Kelamin [JK]
	•••	Variable 2:
ОК	1	Cancel Help

• Klik **<OK>.** Setelah itu akan muncul luaran seperti gambar di bawah ini.

aria	bloc. IV	DI						
	oles: JK, II							
Contin	gency Tabl	e						
TDI		јк		Total				
111	Laki-laki	Peremp	uan	Total				
SLA	4		1	5				
D3	4		6	10				
<mark>S1</mark>	6		9	15				
Total	14		16	30				
Test St	atistics	20120	1000			1000-00 II	0490000	THE REPORT OF
	јк	N	F1	F	2	T2	EDi	Theta
Laki-l	aki	14				224	50	0.0000
D	nnuan	16	S.2	10	96	224	50	0,2232

Correlation Analysis

D. ANALISIS KORELASI CRAMER, TSUPROW, DAN PEARSON

Uji ini dapat digunakan untuk menguji dua kelompok yang independen dengan variabel yang memiliki skala pengukuran paling sedikit nominal dan berbentuk data kategori.

Contoh Masalah

Suatu penelitian dilakukan untuk mengetahui apakah ada perbedaan jenis pekerjaan yang dipilih laki-laki dengan perempuan. Pengambilan terhadap 18 orang memberikan hasil sebagai berikut.

ID	JK	JP	ID	JK	JP
1	1	1	10	2	1
2	1	1	11	2	1
3	1	1	12	2	1
4	1	2	13	2	2
5	1	2	14	2	2
6	1	2	15	2	2
7	1	3	16	2	2
8	1	3	17	2	3
9	2	1	18	2	3

KETERANGAN

JK (Jenis Kelamin): 1=Laki-laki, 2=Perempuan

JP (Pekerjaan): 1=PNS, 2=Swasta, 3=Lainnya

Dengan taraf nyata 10%, 5%, dan 1% ujilah apakah terdapat perbedaan jenis pekerjaan yang dipilih antara laki-laki dengan perempuan?

Pengerjaan Secara Manual

- 1. Rumuskan Hipotesis
 - H₀: Tidak terdapat perbedaan jenis pekerjaan yang dipilih antara lakilaki dengan perempuan.
 - H₁: Terdapat perbedaan jenis pekerjaan yang dipilih laki-laki dengan perempuan.
- 2. Statistik Uji
 - Tetapkan:
 - V1 = variabel yang akan diuji
 - *V2* = variabel kelompok

Untuk contoh masalah di atas, V1 = JP dan V2 = JK.

- Hitunglah:
 - N =jumlah data
 - *c* = jumlah kategori *JP*
 - r =jumlah kategori *JK*
 - *df* =(r-1)(c-1)

Untuk contoh masalah di atas, N = 18, c = 3, r = 2, dan df = 2.

 Buat tabel kontingensi V2-V1 dengan nilai O (observasi) berupa frekuensi pasangan V2-V1.

			V1		T ()
	Ĭ	1		С	Iotal
	1	011	O 12	O _{1j}	m 1
V2					
	R	0r1		Orc	mr
Тс	otal	N1		nc	N
	с				

$$m_r = \sum_{j=1}^{r} O_{rj}$$
$$n_c = \sum_{i=1}^{r} O_{ci}$$

Untuk contoh masalah di atas, tabel kontingensinya adalah:

		P	ekerjaan		Total
		1	2	3	TOLAI
Ionia Kalamin	1	3	3	2	8
Jenis Kelamin	2	4	4	2	10
Total		7	7	4	18

 Buat tabel bantu untuk mendapatkan nilai *E* (ekspektasi) dari setiap nilai *O* (observasi).

				V1	
		i	1		С
		1	E11	E12	E1j
	V2		:	:	:
		r	Er1	:	Erc
E	$E_{ij} =$	$\frac{m_i * m_i}{N}$	n _j		

Untuk contoh masalah di atas, tabel bantunya adalah:

		P	ekerjaan	
		1	2	3
lania Kalamin	1	3,1111	3,1111	1,7778
Jenis Kelamin	2	3,8889	3,8889	2,2222

Hitung χ² dengan rumus

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

Untuk contoh masalah di atas adalah sebagai berikut.

 $\chi^2 = 0,0040 + 0,0040 + 0,0278 + 0,0032 + 0,0032 + 0,0222$

$$\chi^2 = 0,0643$$

- Cari χ^{2}_{tabel} untuk *df*=2 dan α =0,10, 0,05, dan 0,01 dari tabel *chi-square*. $\chi^{2}_{(2;0,10)} = 4,60517$
 - $\chi^{2}_{(2;0,05)} = 5,99146$

 $\chi^{2}_{(2; 0,01)} = 9,21034$

- 3. KriteriaUji
 - Kriteria uji tolak H_0 jika $\chi^2_{hitung} > \chi^2_{tabel}$.
 - Untuk contoh kasus di atas, dengan nilai α = 10%, 5%, dan 1% maka H_0 diterima.
 - Jika H₀ ditolak, hitung koefisien korelasi dengan rumus berikut.

$$C = \sqrt{\frac{\chi^2}{N + X^2}}$$

$$T = \sqrt{\frac{\chi^2}{N\sqrt{(r-1)(c-1)}}}$$
$$V = \sqrt{\frac{\chi^2}{N(a-1)}}$$

a = nilai baris atau kolom terkecil

4. Kesimpulan

Dapat disimpulkan bahwa "Tidak terdapat perbedaan jenis pekerjaan yang dipilih antara laki-laki dengan perempuan".

Pengerjaan dengan Unpad SAS

- Buka tabel contoh cor_cramer
- Pilih menu Analyze->Correlate->Crammer, Tsuprow, and Pearson
- Pilih variabel **JK** untuk *grouping variables* dan variabel JP untuk *test variable* seperti pada gambar di bawah ini.

Variable List:	Variable 1:	
	Jenis Kelamin (JK)	
	Variable 2:	
	III) Ienis Pekerjaan [JP]	
OK	Cancel Help	

• Klik **<OK>.** Setelah itu akan muncul luaran seperti gambar di bawah ini.

Correlation Analysis

Cramer V, TSuprow T, & Pearson C

Data source: cor_cramer

Variables: JK, JP

Contingency Table

Insta Walanta	Je	Tetal		
jenis kelamin	PNS	Swasta	Lainnya	Total
Laki-laki	3	3	2	8
Perempuan	4	4	2	10
Total	7	7	4	18

Expectation Table

Terris Walancia	Jenis Pekerjaan			
jenis Kelamin	PNS	Swasta	Lainnya	
Laki-laki	3,1111	3,1111	1,7778	
Perempuan	3,8889	3,8889	2,2222	

Test Statistics

N		18
с	3	
r		2
df		2
x ²		0,0643
χ ² (2; 0,10)	1-tailed	<mark>4,605</mark> 2
χ ² (2; 0,05)	1-tailed	5,9915
χ ² (2; 0,01)	1-tailed	9,2103

Correlation Coefficient

0,0597
0,0503
0,0598

E. ANALISIS KORELASI SPEARMAN

Analisis ini digunakan untuk mengetahui hubungan diantara dua variabel yang memiliki skala pengukuran paling sedikit ordinal.
Contoh Masalah

Suatu penelitian dilakukan untuk mengetahui hubungan antara motivasi kerja dengan hasil kerja dari 12 karyawan. Diperoleh data sebagai berikut:

No	Motivasi	Hasil
1	23	78
2	25	78
3	26	80
4	30	85
5	32	85
6	25	78
7	21	80
8	20	70
9	34	82
10	32	80
11	33	85
12	19	75
Kotoronac		

Keterangan: Motivasi = Motivasi Kerja, Hasil = Hasil Kerja

Dengan taraf nyata 10%, 5%, 1% ujilah apakah terdapat hubungan antara motivasi kerja dengan hasil kerja?

Pengerjaan Secara Manual

1. Rumuskan Hipotesis

H₀: Tidak terdapat hubungan antara motivasi kerja dengan hasil kerja H₁: Terdapat hubungan antara motivasi kerja dengan hasil kerja

- 2. Statistik Uji
 - Tetapkan:
 - V1 = Motivasi
 - V2 = Hasil
 - α = 10%, 5%, 1%
 - Buatlah tabel bantu untuk menyalin variabel-variabel yang akan diuji.

ID	V1	V2
1		
Ν		

Untuk contoh masalah di atas adalah:

ID	V1	V2
1	23	76
2	25	78

UJI KORELASI

ID	V1	V2
3	26	87
4	30	85
5	32	87
6	25	79
7	21	73
8	20	70
9	34	82
10	32	80
11	33	85
12	19	75

Perluas tabel bantu dengan menambahkan variabel *R1* dan *R2*. Lakukan pe-*ranking*-an terhadap *V1* dan nilainya tetapkan untuk variabel *R1*; dan lakukan pe-*ranking*-an terhadap *V2* dan nilainya tetapkan untuk variabel *R2*.

ID	V1	V2	R1	R2
1				
	:			:
Ν	:			:

 Perluas tabel bantu dengan menambahkan variabel *d* dan *d*². Tetapkan *d=R1-R2*, dan *d*²=(*R1-R2*)².

ID	V1	V2	R1	R2	d	d ²
1			:	:	:	
Ν						
						$\sum d^2$

Untuk contoh masalah di atas adalah:

ID	V1	V2	R1	R2	D	D2
1	23	78	4.00	4.00	0.00	0.00
2	25	78	5.50	4.00	1.50	2.25
3	26	80	7.00	7.00	0.00	0.00
4	30	85	8.00	11.00	-3.00	9.00
5	32	85	9.50	11.00	-1.50	2.25
6	25	78	5.50	4.00	1.50	2.25
7	21	80	3.00	7.00	-4.00	16.00
8	20	70	2.00	1.00	1.00	1.00
9	34	82	12.00	9.00	3.00	9.00
10	32	80	9.50	7.00	2.50	6.25
11	33	85	11.00	11.00	0.00	0.00
12	19	75	1.00	2.00	-1.00	1.00
						49.00

Hitung

$$r_s = 1 - \frac{6\sum_{i=1}^N d_i^2}{N^3 - N}$$
$$z = r_s \sqrt{N - 1}$$

Untuk contoh masalah di atas adalah:

$$r_s = 1 - \frac{345}{1716} = 1 - 0,2010 = 0,7990$$
$$z = r_s \sqrt{N - 1} = 0,7990\sqrt{11} = 2,66498$$

 Cari nilai Z_{tabel} dari tabel distribusi normal untuk taraf nyata 10%, 5%, dan 1%. Dari tabel diperoleh:

$$Z_{0,10} = 1,6448$$

 $Z_{0,05} = 1,9600$
 $Z_{0,01} = 2,5760$

 Kriteria uji Tolak H₀ jika nilai Z_{hitung}>Z_{tabel} atau Z<-Z_{tabel}

Pengerjaan dengan Unpad SAS

- Buka tabel contoh cor_spearman
- Pilih menu Analyze->Correlate->Spearman
- Pilih variabel *Motivasi* untuk *Variabel 1* dan variabel *Hasil* untuk *Variable 2* seperti pada gambar di bawah ini.

	Variable 1:	
u)	Motivasi]	
m)-	Variable 2:	_
ак Г	Cancel Hel	o 1

• Klik <**OK>.** Setelah itu akan muncul luaran seperti gambar di bawah ini.

Correlation Analysis

Spearman

Data source: cor_spearman Variables: Motivasi, Hasil

	Motivasi	Hasil	R1	R2	d	d ²
1	23	78	4,00	4,00	0,00	0,00
2	25	78	<mark>5,50</mark>	4,00	<mark>1,5</mark> 0	2,25
3	26	80	7,00	7,00	0,00	0,00
4	30	85	<mark>8,00</mark>	11,00	- <mark>3,</mark> 00	9,00
5	32	85	9,50	11,00	-1,50	2,25
6	25	<mark>78</mark>	<mark>5,50</mark>	4,00	1,50	2,25
7	21	80	3,00	7,00	-4,00	16,00
8	20	70	2,00	1,00	1,00	1,00
9	34	82	12,00	9,00	3,00	9,00
10	32	80	<mark>9,50</mark>	7,00	2,50	6,25
11	33	85	11,00	11,00	0,00	0,00
12	19	75	1,00	2,00	- <mark>1,00</mark>	1,00
					Total	49,00

Test Statistics

Rs		0,8287
Z		2,7484
Z0,10	2-tailed	1,6448
Z0,05	2-tailed	1,960 <mark>0</mark>
Z0,01	2-tailed	2,5760
Z0,10	1-tailed	1,2816
Z0,05	1-tailed	1,6448
Z0,01	1-tailed	2,3263

F. UJI GAMMA

Analisis ini digunakan untuk mengetahui hubungan diantara dua variabel yang memiliki skala pengukuran paling sedikit ordinal dan berbentuk kategori.

Contoh Masalah

Suatu penelitian dilakukan untuk mengetahui hubungan antara tingkat pendidikan dengan jabatan karyawan di suatu perusahaan. Pengambilan data terhadap 40 karyawan memberikan hasil sebagai berikut.

No	Pendidikan	Jabatan	No	Pendidikan	Jabatan
1	1	1	21	2	1
2	1	1	22	2	1
3	1	1	23	2	1
4	1	1	24	2	2
5	1	1	25	2	2
6	1	1	26	2	2
7	1	1	27	2	2
8	1	1	28	2	2
9	1	1	29	2	3
10	1	1	30	2	3
11	1	2	31	2	3
12	1	2	32	2	3
13	1	2	33	3	1
14	1	3	34	3	1
15	1	3	35	3	2
16	2	1	36	3	2
17	2	1	37	3	3
18	2	1	38	3	3
19	2	1	39	3	3
20	2	1	40	3	3

Keterangan:

Pendidikan: 1 = SLA, 2 = D3, 3 = S1 Jabatan: 1 = Karyawan Biasa, 2 = Supervisor, 3 = Manajer

Dengan taraf nyata 10%, 5%, 1%, ujilah apakah terdapat hubungan antara tingkat pendidikan dengan jabatan karyawan di perusahaan tersebut?

Pengerjaan Secara Manual

- 1. Rumuskan Hipotesis
 - H₀: Tidak terdapat hubungan antara tingkat pendidikan dengan jabatan karyawan
 - H₁: Terdapat hubungan antara tingkat pendidikan dengan jabatan karyawan
- 2. Statistik Uji
 - Tetapkan:
 - V1 = Pendidikan
 - V2 = Jabatan
 - α = 10%, 5%, 1%

 Susun data dalam bentuk Tabel Kontingensi dengan kategori berurut dari kecil ke besar

Delveriaen	Pendidikan				
Pekerjaan	SLA	D3	S 1		
Karyawan Biasa	10	8	2		
Supervisor	3	5	2		
Manajer	2	4	4		

Hitung:

$$G = \frac{\#(+) - \#(-)}{\#(+) + \#(-)}$$
$$z = (G - \gamma) \sqrt{\frac{\#(+) + \#(-)}{N(1 - G^2)}}$$

dimana:

#(+) adalah banyaknya pasangan yang agreement#(-) atau banyaknya pasangan yang disagreement

Untuk contoh masalah di atas:

$$#(+) = 10(5+2+4+4) + 8(2+4) + 3(4+4) + 5(4) = 150 + 48 + 24 + 20 = 242$$
$$#(-) = 8(3+2) + 2(3+5+2+4) + 5(2) + 2(2+4) = 40 + 28 + 10 + 12 = 90$$

$$G = \frac{242 - 90}{242 + 90} = 0,45783132$$
$$z = (0,45783132 - \gamma) \sqrt{\frac{242 + 90}{40(1 - 0,45783132^2)}} = 1,48362349$$

• Cari Z_{tabel} untuk α=0,10, 0,05, dan 0,01 dari tabel distribusi normal.

Z _(0,10) = 1,6448	uji dua pihak
Z _(0,05) = 1,9600	uji dua pihak
$Z_{(0,01)} = 2,5760$	uji dua pihak
Z _(0,10) = 1,2816	uji satu pihak
Z _(0,05) = 1,6448	uji satu pihak
Z _(0,01) = 2,3263	uji satu pihak

3. Kriteria Uji

Kriteria uji tolak H_0 jika $Z > Z_{tabel}$.

Dengan nilai α = 10% untuk uji satu pihak maka H_0 = ditolak, sementara untuk selebihnya maka H_0 = diterima.

4. Kesimpulan

Dapat disimpulkan secara umum bahwa "Tidak terdapat hubungan antara tingkat pendidikan dengan jabatan karyawan".

Pengerjaan dengan Unpad SAS

- Buka tabel contoh cor_gamma
- Pilih menu Analyze->Correlate->Gamma
- Pilih variabel Pendidikan untuk *Row(s)* dan variabel Jabatan untuk *Column (s)* seperti pada gambar di bawah ini.

		Row(s):	
		in the second second	
		Column(s):	
	•••	ul [Jabatan]	
	- 		
OK		Cancel Help	

• Klik **<OK>.** Setelah itu akan muncul luaran seperti gambar di bawah ini.

Correlation Analysis

Gamma

Data source: cor_gamma Variables: Pendidikan, Jabatan

Contingency Table

D	Jabatan						
Pendidikan	Karyawan Biasa	Supervisor	Manajer				
SLA	10	3	2				
D3	8	5	4				
S1	2	2	4				

Test Statistics

G		0,4578
Z	Z	
Z0,10	2-tailed	1,6448
Z0,05	2-tailed	1,9600
Z0,01	2-tailed	2, <mark>576</mark> 0
Z0,10	1-tailed	1,2816
Z0,05	1-tailed	1,6448
Z0,01	1-tailed	2,3263

G. LATIHAN

Suatu penelitian dilakukan untuk melihat minat dan motivasi belajar mahasiswa baru di Universitas X. Pengambilan data terhadap 30 mahasiswa baru tersebut memberikan hasil sebagai tercantum pada tabel di bawah ini:

No	JK	Minat	Motivasi	IPK	No	JK	Minat	Motivasi	IPK
1	1	0	40	3,12	16	2	1	18	2,43
2	1	1	25	3,43	17	2	1	16	2,76
3	1	0	26	3,00	18	2	0	15	3,87
4	1	0	35	3,08	19	2	0	10	3,45
5	1	0	27	2,87	20	2	1	40	3,12
6	1	1	17	2,86	21	1	0	20	3,15
7	1	1	18	2,56	22	2	0	25	3,47
8	1	0	21	3,88	23	2	1	26	3,25
9	1	0	25	2,74	24	1	1	16	2,61
10	1	1	16	3,96	25	1	1	32	2,92
11	2	1	32	2,90	26	1	1	15	2,78
12	2	0	32	3,43	27	1	0	17	3,87
13	2	0	40	3,21	28	2	1	40	2,90
14	2	1	40	3,44	29	2	1	40	3,84
15	2	1	30	3,33	30	1	1	36	2,95

Catatan:

JK (Jenis Kelamin): 1=Laki-laki, 2=Perempuan Minat (Minat ketika masuk kuliah): 0=tidak berminat, 1=berminat Motivasi (Motivasi ketika masuk kuliah): 1=tidak termotivasi; 2=cukup termotivasi; 3=sangat termotivasi

Dengan taraf kepercayaan 95%, jawablah persoalan berikut ini:

- 1. Hitunglah besarnya hubungan antara jenis kelamin dengan IPK!
- 2. Hitunglah besarnya hubungan antara minat saat masuk kuliah dengan tingkat motivasi belajar!
- 3. Hitunglah besarnya hubungan antara tingkat motivasi belajar dengan IPK mahasiswa!

6 Petunjuk Instalasi

A. KEBUTUHAN SISTEM DAN NOTASI PENULISAN

Untuk dapat menggunakan Unpad SAS pastikan komputer yang Anda gunakan memiliki spesifikasi sebagai berikut.

Prosesor:	Intel/AMD x86 family
RAM:	2 GB
Sistem Operasi:	Windows XP/Vista/7/8/8.1/10 32-bits/64-bits
Database:	MySQL Server versi 5 atau yang lebih baru
	MySQL Connector/ODBC versi 3.51 atau yang lebih
	baru

B. MENGINSTAL PROGRAM

1. Struktur Direktori

Pastikan CD Unpad Statistical Analysis Series (Unpad SAS) yang Anda peroleh terdiri dari direktori dan file-file sebagai berikut.

```
INSTALL
      instalation-guide.pdf
      sas-setup.exe
UTILITIES
      mysql-connector-odbc-3.51.30-win32.msi
      mysql-5.5.45-win32.msi
      reader10 en ha install.exe
MODULES
      cor-readme.pdf
      cor-setup.exe
      ds-readme.pdf
      ds-setup.exe
      np1-readme.pdf
      np1-setup.exe
      np2-readme.pdf
      np2-setup.exe
      np3-readme.pdf
      np3-setup.exe
      sam-readme.pdf
       sam-setup.exe
```

```
BELAJAR STATISTIKA DENGAN UNPAD SAS
```

```
autorun.inf
modules.ini
setup.exe
```

Jika Anda memasukkan CD Unpad SAS ke dalam CD/DVD ROM Drive dan komputer yang Anda gunakan ditetapkan untuk menjalankan *"autorun"* secara otomatis maka Anda Akan melihat Jendela Pembuka untuk menginstal Unpad SAS. Jika tidak, Anda harus menjalankan program **setup.exe** yang terdapat di dalam CD Unpad SAS.

2. Jendela Pembuka

Gambar 6.1: Jendela Pembuka

Jendela Pembuka, ditunjukkan di dalam Gambar 6.1, terdiri dari perintah-perintah untuk:

- Install MySQL Server untuk menginstal server database MySQL.
- Install MySQL Connector untuk menginstal driver ODBC untuk MySQL.
- Install Unpad SAS untuk menginstal aplikasi Unpad SAS.
- Install Unpad SAS Modules untuk menginstal modul-modul Unpad SAS.
- Install Acrobat Reader untuk menginstal aplikasi Acrobat Reader
- Intallation Manual untuk menampilkan dokumen Petunjuk Instalasi Unpad SAS.
- Technical Support untuk menampilkan nomor telpon yang dapat Anda hubungi untuk keperluan konsultasi.

3. Menginstal dan Mengkonfigurasi MySQL Server

a. Menginstal MySQL Server

Unpad SAS mengunakan *MySQL Server* sebagai server basisdata. *My-SQL Server* boleh berada di komputer yang sama dengan komputer yang digunakan oleh Unpad SAS atau berada di komputer lain yang terhubung dengan Unpad SAS melalui jaringan komputer.

Gambar 6.2: Jendela Pembuka *MySQL Server 5.5 Setup*

Unpad SAS menyertakan *MySQL Community Server* versi 5.5, yang merupakan versi *GNU GENERAL PUBLIC LICENSE*, sehingga anda dapat menggunakannya secara cuma-cuma. Perlu anda catat bahwa *MySQL Community Server* memerlukan *Microsoft Visual C++ 2008 Redistributable Package* untuk dapat dijalankan pada sistem operasi *Windows*.

Gunakan perintah ini di komputer dimana MySQL Server akan diinstal.

Jika MySQL Server telah diinstal sebelumnya, Anda dapat mengabaikan perintah ini.

Atas perintah ini, Anda akan melihat jendela *MySQL Setup* seperti ditunjukkan di dalam Gambar 6.2.

Klik tombol <Next>.

Berikutnya Anda akan melihat jendela Persetujuan Lisensi Pengguna akhir, yaitu seperti ditunjukkan di dalam Gambar 6.3.

nd-User	A the followi	preement	ement caref	ully		Ec
, iedde ri		ing license ogre				Car
		GNU GENERAL	PUBLIC LI	CENSE		
		Version 2	, June 19	91		
Copyrig	ght (C) 1989	, 1991 Free	Software	Foundation,	Inc.,	
51 Fran	klin Street	, Fifth Floo	r, Boston	, MA 02110-	1301 USA	
Everyon	ne is permit	sted to copy	and distr	ibute verb:	tim copies	
of this	s license do	cument, but	changing	it is not :	llowed.	
		Prea	umble			
The li	censes for	most softwar	e are des	igned to ta	ke away you	r
freedom	to share an	nd change it.	By cont	rast, the (NU General	Public
License	is intended	i to guarante	e your fr	eedom to sh	are and cha	nge
free		12 12	20.02		2	4.4
software	eto make s	sure the soft	ware is f	ree for all	. its users.	This *
I accer	ot the terms in	the License Ag	reement			
		Print	B	ack	Next	Cancel

Gambar 6.3: Persetujuan Lisensi Pengguna Akhir

- Beri tanda-contreng pada pernyataan "I accept the terms in the License Agreements";
- Klik tombol <Next>.

Berikutnya Anda akan melihat jendela Memilih Tipe Setup, yaitu seperti ditunjukkan pada Gambar 6.4. Pilih salah satu tipe *Setup* sesuai kebutuhan Anda. Pilih:

- *Typical* untuk menginstal hampir semua fitur umum program. Disarankan untuk hampir semua pengguna.
- *Custom* membolehkan pengguna untuk memilih fitur program mana yang akan diinstal dan dimana itu akan diinstal. Disarankan untuk pengguna mahir.
- *Complete* semua fitur program akan diinstal. Memerlukan ruang *disk* yang lebih banyak.

Jika Anda kurang memiliki pengetahuan tentang *MySQL* maka sebaiknya Anda:

- Pilih tipe "Typical";
- Tekan tombol <Next>.

wysQL server 5.5 setup		
Choose Setup Type		60
Choose the setup type that best	t suits your needs	
Typical		
Installs the most comm	on program features. Recom	mended for most users.
Custom		
Allows users to choose they will be installed. R	e which program features will Recommended for advanced R	be installed and where users.
Complete		
All program features w	vill be installed. Requires the r	nost disk space.
	Back	Next

Gambar 6.4: Memilih Tipe *Setup*

Jika Anda memilih tipe **Typical** maka jendela berikutnya menyatakan bahwa *MySQL Server* siap untuk diinstal, yaitu seperti ditunjukkan pada Gambar 6.5.

Gambar 6.5: Siap untuk Menginstal MySQL Server

• Tekan tombol *<Install>*.

• Jendela proses instalasi *MySQL* akan ditampilkan.

Tunggu beberapa menit sampai proses instalasi *MySQL* selesai. Itu ditandai oleh aktifnya tombol *<Next>*. Tekan tombol *<Next>* untuk menampilkan dua jendela berikutnya yang berisi deskripsi singkat tentang produk *MySQL Server*, yaitu seperti ditunjukkan pada Gambar 6.6.

谩 MySQL Server 5.5 Setup									
Installing MySQL Server 5.5		0							
Please wait while the Setup Wizard installs MySQL Server 5.5.									
Status: Updating component re	gistration								
	<u>B</u> ack	Next Cancel							

Gambar 6.6: Proses Instalasi MySQL

Tekan tombol <Next>

Berikutnya Anda akan melihat jendela yang berisi deskripsi singkat tentang produk *MySQL Server*, yaitu seperti ditunjukkan pada Gambar 6.7 dan Gambar 6.8.

PETUNJUK INSTALASI

Gambar 6.7: MySQL Enterprise

Gambar 6.8: MySQL Enterprise

Tekan tombol *<Next>* di kedua jendela tersebut untuk menampilkan jendela berikutnya.

Gambar 6.9: Instalasi MySQL Server Komplit

Jendela yang ditunjukkan di dalam Gambar 6.9 menyatakan bahwa instalasi *MySQL Server* telah lengkap.

Di dalam jendela ini Anda dapat menetapkan bahwa setelah proses instalasi akan dilanjutkan dengan proses konfigurasi *MySQL* atau tidak. Beri tanda contreng pada pernyataan "*Launch the MySQL Instance Configuration Wizard*" jika itu akan Anda lakukan. Selanjutnya tekan tombol *<Finish>* untuk mengakhiri proses instalasi *MySQL Server*.

b. Mengkonfigurasi MySQL Server

Setelah *MySQL Server* diistal, itu perlu dikonfigurasi. Ini diperlukan terutama untuk menetapkan bagaimana cara menjalankan *MySQL Server*, apakah itu akan dijalankan secara otomatis atau secara manual, serta menetapkan kata kunci (*password*) untuk mengakses *MySQL Server*.

MySQL Server Instance Configu	ration Wizard
	Welcome to the MySQL Server Instance Configuration Wizard 1.0.17.0 The Configuration Wizard will allow you to configure the MySQL Server 5.5 server instance. To Continue, click Next.
MySQL.	Cancel

Gambar 6.10:

Jendela Pembuka Konfigurasi MySQL Server Instance

Klik <Next>

Gambar 6.11: Jendela 2 Konfigurasi MySQL Server Instance

- Pilih "Standard Configuration";
- Klik <Next>

Jendela 3 Konfigurasi *MySQL Server Instance*

- Pilih "Install As Windows Service";
- Pilih "MySQL" untuk "Service Name";
- Pilih "Launch the MySQL Server automatically";
- Pilih "Include Bin Directory in Windows PATH";
- Klik <Next>.

Gambar 6.13: Jendela 4 Konfigurasi MySQL Server Instance

- Pilih "Modify Security Settings";
- Tetapkan "unpad_sas" untuk "New root password";
- Tetapkan "unpad_sas" untuk "Confirm";
- Pilih "Enable root access from remote machines";
- Klik *<Next>*.

SQL Server Instance Configurati	on Wizard	L X
MySQL Server Instance Configura	ition	
Configure the MySQL Server 5.	i server instance.	
Ready to execute		
O Prepare configura	tion	
Write configuration	on file	
Start service		
Apply security set	ings	
Please press [Execute] to start the configuration.	
	< Back	xecute Cancel

Gambar 6.14: Jendela 5 Konfigurasi MySQL Server Instance

Klik <Execute>

Gambar 6.15: Jendela 6 Konfigurasi MySQL Server Instance

Klik <Finish>

c. Menguji Kesiapan MySQL Server

Pada bagian ini penulis ingin memastikan bahwa *MySQL Server* telah Anda instal secara benar. Hal ini penting mengingat dalam beberapa uji-coba yang penulis lakukan terhadap sejumlah mahasiswa ditemukan fakta bahwa sekira 10%-15% mahasiswa mengalami kesalahan/kegagalan dalam menginstal *MySQL Server*. Jika *MySQL Server* salah/gagal diinstal maka dapat dipastikan bahwa Unpad SAS tidak akan dapat dijalankan.

Mari kita lihat apakah *MySQL Server* telah diinstal secara benar, sesuai dengan langkah-langkah di atas atau tidak adalah dengan melihat statusnya di dalam *Task Manager*. Untuk menampilkan *Task Manager* dapat dilakukan melalui dua cara, yaitu:

- Cara pertama:
 - Tekan tombol Ctrl+Alt+Del
 - Pilih perintah "Start Task Manager"
- Cara kedua:
 - Bawa kursor ke "Task bar"
 - Klik tombol-kanan mouse untuk menampilkan pop-up menu di bawah ini.

• Pilih perintah "Start Task Manager"

Atas perintah tersebut maka jendela *Task Manager* akan ditampilkan, yaitu seperti terlihat di dalam Gambar 6.16.

Applications P	rocesses	Services	Perfor	mance	Networking	Users
Name	PID	Descript	tion	Status	Group	
MySQL	6960	MySQL		Runn	N/A	
napagent Nero BackIt Netlogon Netman NetMsmqAc NetPipeActi netprofm	 1020 304	Network Nero Ba Netlogo Network Net.Msr Net.Pipe Network	c A ckI n c C nq e Li c Li	Stop Stop Runn Stop Stop Runn	NetworkSe N/A LocalSyste	 .e
Netropaca. Netroport. NlaSvc nsi odserv ose p2pimsvc	 1088 304	Net. Tcp Net. Tcp Network Microso Office S Peer Ne	Po (Lo (St ft our tw	Stop Stop Runn Stop Stop Stop	NetworkSe LocalServic N/A N/A LocalServic	 e

Gambar 6.16: Jendela *Task Manager*

Pilih *"Services"* seperti terlihat di dalam gambar di atas dan pastikan *MySQL* terdaftar di kolom **Name**. Jika itu tidak terdaftar maka Anda harus mengulang bagian **"1.B.3.b. Mengkonfigurasi MySQL Server**".

Berikutnya cobalah Anda buka jendela **Command Prompt**. Ada beberapa untuk melakukan itu, yaitu:

• Cara I:

Pilih Start->All Program->Accessories->Command Prompt seperti ditunjukkan di dalam gambar berikut.

Calculator	and the second sec
Command Prompt	mustofa
Connect to a Network Projector	
Connect to a Projector	Documents
Getting Started	
Math Input Panel	Pictures
Notepad	E
🔊 Paint	Music
s Remote Desktop Connection	
🗐 Run	Computer
Snipping Tool	The second line
L Sound Recorder	Control Panel
Sticky Notes	
Sync Center	Devices and Printe
Windows Explorer	Default Programs
🔠 WordPad	Delauteriograms
Ease of Access	Help and Support
🍶 System Tools	
Jablet PC	*
Back	
Count and Stor	
search programs and files	Snut down

- Cara II:
 - Klik tombol #+R untuk menampilkan jendela "Run" seperti ditunjukkan dalam gambar berikut.

• Tulis "cmd" pada ruas **Open** dan klik tombol <OK>.

Atas perintah tersebut akan dibuka jendela **Command Prompt** seperti ditunjukkan dalam gambar berikut.

Gambar 6.17: Jendela *Command Prompt*

Di dalam jendela Command Prompt tuliskan perintah berikut untuk menjalankan program *MySQL Client* standar.

```
C:>mysql --user=root --password=unpad_sas
'mysql' is not recognized as internal or external command,
operable program or batch file
```

C:>_

Jika muncul pesan kesalahan seperti itu, kemungkinan masalahnya adalah:

- Anda lupa mencontreng "Include Bin Directory in Windows PATH" pada saat Anda mengkonfigurasi MySQL Server, seperti ditunjukkan pada Gambar 6.12.
- Jika Anda yakin telah melakukan hal di atas, kemungkinan kesalahannya terletak pada Windows Anda. Pada saat uji-coba, penulis menemukan hal tersebut yang disebabkan oleh Windows yang tidak secara langsung mengeksekusi perintah SET PATH yang diberikan oleh MySQLInstance-Config. Solusi untuk masalah itu adalah me-restart Windows Anda dan mengulang perintah di atas.

Pesan kesalahan lain yang boleh jadi muncul atas perintah tersebut adalah seperti ditunjukkan di bawah ini.

```
C:>mysql --user=root --password=unpad_sas
ERROR 2005 (HY000): Unknown MySQL server host 'localhost' (0)
```

Pada saat uji-coba, penulis menemukan hal tersebut yang disebabkan oleh konfigurasi yang salah (disengaja) di dalam file C:\Windows\System32\ drivers\etc\hosts. Cobalah buka file tersebut dan perhatikan baris berikut ini.

... 0.0.0.0 localhost ...

Kesalahan tersebut kemungkinan besarnya disengaja karena Anda diminta menuliskan itu oleh pihak tertentu berkaitan dengan meng-*hack* program ilegal yang Anda gunakan. Solusi untuk masalah itu adalah mengembalikan konfigurasi tersebut pada nilai sebenarnya, yaitu mengganti nilai "0.0.0.0 localhost" menjadi "127.0.0.1 localhost".

Untuk melakukan perubahan itu pastikan anda melakukan langkah-langkah berikut.

- Jika Anda memasang program Anti Virus, pastikan itu itu dinonaktifkan atau setidak-tidaknya fitur *"Enable Real-time Protection"* nya dimatikan sementara.
- Jika Anda menggunakan Windows XP/Vista, Anda dapat secara langsung mengedit *file* tersebut dengan menggunakan Notepad atau editor teks lainnya.
- Jika Anda menggunakan Windows 7/8.0/8.1/10, Anda harus menyalin file tersebut terlebih dahulu ke folder kerja Anda, lakukan pengeditan terhadap file tersebut dengan menggunakan Notepad atau editor teks lainnya, setelah itu salin kembali file tersebut ke folder C:\Windows\System32\drivers\etc.

Jika *MySQL Server* diinstal dan dikonfigurasi secara benar maka respon atas perintah tersebut adalah sebagai berikut.

```
C:>mysql --user=root --password=unpad_sas
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 9
Server version: 5.5.45 MySQL Community Server (GPL)
Copyright (c) 2000, 2015, Oracle and/or its affiliates. All
rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.
```

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

Cobalah Anda tuliskan perintah "SHOW DATABASES;" dan tekan tombol <Enter>, maka Anda akan melihat respon sebagai berikut.

```
mysql> SHOW DATABASES;
+-----+
| Database |
+----+
| information_schema |
| mysql |
| performance_schema |
| test |
+----+
4 rows in set (0.00 sec)
```

mysql>

Jika semuanya telah berjalan dengan benar maka Anda dapat keluar dari MySQL Client dengan memberikan perintah *QUIT*.

4. Menginstal MySQL Connector

Unpad SAS melakukan koneksi terhadap *MySQL Server* melalui pengarah *ODBC*. Untuk keperluan tersebut Anda harus menginstal *MySQL Connector* di komputer yang sama dengan komputer yang digunakan oleh Unpad SAS.

Jika MySQL Connector telah diinstal sebelumnya, Anda dapat mengabaikan perintah ini.

Gambar 6.18: Perintah Menginstal MySQL Connector

Gambar 6.19: Jendela Pembuka MySQL Connector/ODBC Setup

Klik <Next>

Gambar 6.20: Persetujuan Lisensi

• Pilih "I accept the terms in the license agreement". Klik <Next>

揚 MySQL Connector/ODBC 3	.51 - Setup Wizard		×
Setup Type Choose the setup type that	best suits your needs.		
Please select a setup type.			
© Typical Common pro general use. Complete All program f space.)	gram features will be installed features will be installed. (Req	. Recommended fo uires the most disk	nr
Custom Choose whic will be install	h program features you want ed. Recommended for advanc <u>eBack</u>	installed and wher red users. Next >	e they

Gambar 6.21: Jendela 3 MySQL Connector/ODBC Setup

- Pilih "Typical";
- Klik <Next>

teady to Install the Program The wizard is ready to begin insta	llation.
If you want to review or change a exit the wizard. Current Settings:	any of your installation settings, click Back. Click Cancel to
Setup Type:	
Typical	
Destination Folder:	
C:\Program Files (x86)\MySQ	L\Connector ODBC 3.51\

Gambar 6.22: Jendela 4 MySQL Connector/ODBC Setup

Klik <Install>

Installing The pro	ram features you selected are being installed.
P	Please wait while the Setup Wizard installs MySQL Connector/ODBC 3.51. This may take several minutes.
	Status:
	Updating component registration

Gambar 6.23: Proses instalasi *MySQL Connector/ODBC Setup*

PETUNJUK INSTALASI

岁 MySQL Connector/ODBC 3.	51 - Setup Wizard
	Wizard Completed Setup has finished installing MySQL Connector/ODBC 3.51. Click Finish to exit the wizard.
MySQL.	< Back Finish Cancel

Gambar 6.24: Jendela 6 MySQL Connector/ODBC Setup

• Klik <*Finish*>

5. Menginstal Unpad SAS

Gambar 6.25: Perintah Menginstal UNPAD SAS

• Pilih "Install Unpad SAS: Database Management"

Gambar 6.26: Jendela Pembuka Instalasi Unpad SAS

Klik <Next>

License Agreement		
Please read the following licen	ise agreement carefully.	Ċ
To add your own license text to t view.	this dialog, supply your license agreement file	in the Dialogs
 Navigate to the Dialogs vie Select the License Agree Set the License File prope 	ew, ment dialog. rty by browsing to your license agreement R1	TF file.
 Navigate to the Dialogs vie Select the License Agreer Set the License File prope After you build your release, you 	w. ment dialog. rty by browsing to your license agreement R1 ır license text will be displayed in the License .	TF file. Agreement dialog
 Navigate to the Dialogs vie Select the License Agreen Set the License File prope After you build your release, you 	w. ment dialog. rty by browsing to your license agreement R1 ir license text will be displayed in the License .	⊤ file. Agreement dialog
 Navigate to the Dialogs vie Select the License Agreer Set the License File prope After you build your release, you I accept the terms in the license 	w. ment dialog. rty by browsing to your license agreement R1 ur license text will be displayed in the License . se agreement	TF file. Agreement dialog
 Navigate to the Dialogs vie Select the License Agreer Set the License File prope After you build your release, you I accept the terms in the licens I do not accept the terms in the 	w. ment dialog. rty by browsing to your license agreement R1 ir license text will be displayed in the License . se agreement ne license agreement	TF file. Agreement dialog
 Navigate to the Dialogs vie Select the License Agreer Set the License File prope After you build your release, you I accept the terms in the licens I do not accept the terms in the stallShield 	w. ment dialog. rty by browsing to your license agreement R1 ir license text will be displayed in the License . se agreement ne license agreement	IF file. Agreement dialog

Gambar 6.27: Persetujuan Lisensi

- Pilih "I accept the terms in the license agreement";
- Klik <Next>

Customer Information		
Please enter your information.		Ì
User Name:		
I		
Organization:		
Install this application for:		
Install this application for:	es this computer (all users)	
Install this application for:	es this computer (all users) ustofa)	
Install this application for:	es this computer (all users) ustofa)	
Install this application for: Anyone who us Only for me (mi tallShield	es this computer (all users) ustofa)	

Informasi Pengguna

- Tuliskan nama Anda di ruas "User Name", nama organisasi di ruas "Organization";
- Pilih "Anyone" dan klik <Next>

Setup Type	
Choose the se	etup type that best suits your needs.
Please select	a setup type.
Typical	
1	All program features will be installed. (Requires the most disk space.)
1	Minimum required features will be installed.
tallShield	

Gambar 6.29: Memilih Tipe Setup

- Pilih "*Typical*";
- Klik <Next>

eady to Install the Program			
The wizard is ready to begin inst	allation.		C
If you want to review or change exit the wizard.	any of your installation s	ettings, click Back. (Cl <mark>ic</mark> k Cancel to
Current Settings:			
Setup Type:			
Typical			
Destination Folder:			
C:\Program Files (x86)\UNP	AD SAS\		
User Information:			
Name: mustofa			
Company:			
tallShield	245		
	< Back	Install	Cancel

Gambar 6.30: Instalasi Unpad SAS Siap Dilakukan

• Klik *<Install>*

The pro	J UNPAD SAS - Database Management gram features you selected are being installed.
ß	Please wait while the InstallShield Wizard installs UNPAD SAS - Database Management. This may take several minutes. Status:

Gambar 6.31: Instalasi Unpad SAS Sedang Dilakukan.

PETUNJUK INSTALASI

Gambar 6.32: Instalasi Unpad SAS Selesai

• Klik *<Finish>*

Ulangi langkah-langkah di atas untuk menginstal modul *Descriptive Statistic, Sampling,* dan modul-modul lainnya yang telah terdaftar.

6. Menginstal Acrobat Reader

Gambar 6.33: Perintah Menginstal Acrobat Reader

Jika Acrobat Reader telah diinstal sebelumnya, Anda dapat mengabaikan perintah ini.

- Pilih "Install Acrobat Reader"
- Ikuti petunjuk yang ditampilkan di layar.

7. Menampilkan Petunjuk Instalasi

Gambar 6.34: Perintah Menampilkan Petunjuk Instalasi

8. Dukungan Teknis

Gambar 6.35: Perintah Menampilkan Nomor Telpon Dukungan Teknis

C. MENGGUNAKAN APLIKASI

1. Menyiapkan Database

Klik tombol #+R

	Type the name of a program, folder, document, or Internet resource, and Windows will open it for you.
<u>O</u> pen:	%APPDATA%\UNPAD SAS\dbinit\sas-dbinit.cmd
	OK Cancel Browse

- Tulis "%APPDATA%\UNPAD SAS\dbinit\sas-dbinit.cmd" pada ruas "Open";
- Klik tombol <OK>

2. Mengkonfigurasi ODBC

MySQL Connector/ODBC yang didistribusikan dengan Unpad SAS adalah versi 3.51 32 *bits*. Jika Anda menggunakan *MySQL Connector/ODBC* versi yang lebih baru, perhatikan apakah itu untuk *Windows 32 bits* atau 64 *bits*? *MySQL Connector/ODBC* versi 32 *bits* dapat diinstal pada *Windows 32/64 bits*, sementara *MySQL Connector/ODBC* versi 64 *bits* hanya dapat diinstal pada *Windows 64 bits*.

Jika Anda menggunakan *MySQL Connector/ODBC* versi 32 bits pada *Windows 64 bits* maka konfigurasi ODBC dilakukan melalui perintah sebagai berikut.

Klik tombol #+R

Jendela Run

- Tulis "%WINDIR%\SysWOW64\odbcad32.exe" pada ruas "Open";
- Klik tombol <OK>

Sementara jka Anda menggunakan *MySQL Connector/ODBC* versi 32 *bits* pada *Windows 32 bits* atau menggunakan *MySQL Connector/ODBC* versi 64 *bits* pada *Windows 64 bits* maka konfigurasi ODBC dilakukan melalui perintah sebagai berikut.

Klik tombol #+R

Jendela Run

- Tulis "%WINDIR%\System32\odbcad32.exe" pada ruas "Open";
- Klik tombol <OK>

Atas perintah tersebut maka akan ditampilkan jendela *ODBC Data Source Administrator* seperti ditunjukkan di dalam gambar berikut.

ser DSN	System DSN	File DSN	Drivers	Tracing	Connection Pool	ng About
System D	lata Sources:					
Name	Driver					A <u>d</u> d
						<u>R</u> emove
						Configure
	An ODBC Sy the indicated on this machi	stem data s data provid ne, includin	ource sto ler. A Sy g NT serv	res informa stem data vices.	ition about how to source is visible to	connect to all users

Gambar 6.39:

ODBC Data Source Administrator

- Pilih "System DSN";
- Klik tombol <*Add*>

	Name	/ ^
	Microsoft Paradox-Treiber (*.db) €
011 0	Microsoft Text Driver (*.txt;	*.csv) E
	Microsoft Text-Treiber (*.txt	;*.csv) €
	Microsoft Visual FoxPro Dri	ver 1
	Microsoft Visual FoxPro-Tre	iber 1
	MySQL ODBC 3.51 Driver	3 8
	SQL Server	e *
	۲ III	+

Gambar 6.40: Create New Data Source

- Pilih "MySQL ODBC 3.51 Driver";
- Klik tombol <Finish>

sal nnector/ODB	с		(
Connection Parameter	s		
Data Source Name:	sas		
Description:			
TCP/IP Server:	localhost	Port:	3306
Named Pipe:			
User:	root		
Password:	•••••		
Database:	sas		Test
Details >>	information_schema mysql performance_schema sas	ancel	
	test		

Gambar 6.41: MySQL Connector/ODBC Data Source Configuration

- Masukkan "sas" ke dalam ruas "Data Source Name";
- Masukkan deskripsi ke dalam ruas "Description";
- Masukkan "localhost" ke dalam ruas "TCP/IP Server";
- Masukkan "3306" ke dalam ruas "Port";
- Masukkan "root" ke dalam ruas "User";
- Masukkan "unpad_sas" ke dalam ruas "Password";
- Pilih "sas" pada kotak-kombo "Database";
- Klik tombol <OK>

3. Menjalankan Unpad SAS

Pada *Windows Desktop*, klik ikon Unpad SAS dan tekan tombol <Enter> atau klik-ganda ikon tersebut. Cara lainnya adalah, pada *Windows Taskbar*, klik tombol *<Start>*, pilih *"All Programs"*, pilih

"Unpad SAS", dan klik "Unpad SAS".

PETUNJUK INSTALASI

Gambar 6.42: Jendela Pembuka Unpad SAS

Sesudah Jendela Pembuka, Anda akan dibawa masuk ke dalam Jendela Utama Unpad SAS sebagai berikut.

Gambar 6.43: Jendela Utama Unpad SAS

4. Meng-import tabel-tabel contoh

Unpad SAS menyediakan contoh-contoh tabel untuk setiap metode analisis. Tabel-tabel contoh tersebut ditempatkan di dalam folder %APPDATA%\UNPAD SAS\samples berupa file-file *SQL-Script* (SQL). Untuk mengimpor file-file tersebut lakukan langkah-langkah sebagai berikut.

• Pertama. Buka menu File dan pilih perintah Import Table.

Gambar 6.44: Menu File UNPAD SAS

Atas perintah tersebut akan ditampilkan kotak dialog sebagai ber	rikut.
😽 Open	x

Look in:	samples		- + E 📸 💷 -	
C.	Name	*	Date modified	Туре
	cor_etj-sa	mples.sql	7/29/2018 2:35 AM	SQL File
ecent Places	np_2inde.	sql	7/29/2018 2:37 AM	SQL File
	np_2rel.sq	1	7/29/2018 2:35 AM	SQL File
Desktop	np_chi.sql		7/29/2018 2:56 AM	SQL File
E	np_kinde_	1.sql	7/29/2018 2:36 AM	SQL File
in The	np_kinde_	2.sql	7/29/2018 2:38 AM	SQL File
oraries	np_krel_1.	sql	7/29/2018 2:39 AM	SQL File
	np_krel_2.	sql	7/29/2018 2:40 AM	SQL File
3	np_runs.so	ql	7/29/2018 2:57 AM	SQL File
mputer	sas-sampl	es.sql	7/29/2018 11:45 AM	SQL File
stwork				
CLIVOIN	-	m		
	File <u>n</u> ame:	sas-samples		Open
	Files of type:	SOL Seriet files (* eal)		Cancel

Gambar 6.45: Kotak Dialog Import Table

• **Kedua**. Pilih tipe file *SQL Script files (*.sql),* pilih nama file yang akan diimport, misalnya "sas-samples.sql", dan klik tombol **<Open>**. Atas perintah tersebut akan ditampilkan jendela "Import Table" sebagai berikut.

Gambar 6.46: Jendela Import Table

- Klik tombol 🕨 (*Run SQL script*) untuk menjalankan skrip tersebut.
- Atas perintah tersebut maka tabel contoh yang dimaksud akan ditambahkan ke dalam Unpad SAS.
- Jangan melakukan perubahan apa pun terhadap skrip SQL tabel-tabel contoh terkecuali Anda telah memahami arti perintah di dalam skrip SQL tersebut. Uraian lebih lanjut tentang struktur perintah untuk mengimpor

tabel dalam bentuk skrip SQL dapat Anda baca di Bab 1 tentang Mengimpor Tabel.

• **Ketiga**. Lakukan langkah **pertama** dan **kedua** untuk mengimpor tabeltabel lainnya.

Cara lainnya adalah klik tombol ^C untuk menampilkan kotak dialog "Import Table" kemudian lakukan langkah **kedua** untuk mengimpor tabeltabel lainnya.

Daftar Pustaka

- Field, Andy (2005), *Discovering Statistics Using SPSS*, Sage Publications, London
- Howe, David. C. (2012), *Statistical Methods for Psychology*, Wadsworth Cengage Learning, USA
- Lemeshow S, Hosmer DW, Klar J, Lwanga SK (1990) *Adequacy of Sample Size in Health Studies*. Wiley, Chichester
- Lohr, Sharon L. (2009), Sampling: Design and Analysis, Duxbury Press, California
- Ott, R. Lyman dan Longnecker, Michael (2001), *An Introduction to Statistical Methods and Data Analysis*, Duxbury Thomson Learnings, USA
- R. L. Scheaffer, W. Mendenhall and R. L. Ott (2012) *Elementary Survey* Sampling, 5th Edition, Duxbury Press, New York,

Sudjana (2012), Metode Statistika, Tarsito, Bandung

Vemoy, Mark, W. dan Vemoy, Judith, A. (1992), *Behavioral Statistics in Action*, Wadsworth Publishing Company, USA

Indeks

Acrobat Reader, 176, 200 *Align*, 11, 14, 18 AMD, 175 autorun, 176 bar chart, 70 Bidang-kerja, 2 *bimodal*, 45 bound of error, 90, 92, 98 Boxplot, 77 CD Unpad SAS, 176 Clusterred Sampling, 108 Column, 11, 14, 18 *Command Prompt*, 187, 188, 189 *Complete*, 178 **Compute Variables**, 29 Copy-Paste, 20 Crosstabs, 39, 80, 81 *Custom*, 178 Data Source Administrator, 202 Data Source Name, 204 Data View, 4, 11, 19, 28 Database, 175, 204, 243, 244 DataView, 76 Date, 9, 10, 11 dec, 9, 11 **Dec**, 11, 13, 17 Decile, 49, 52 Description, 204 Descriptive, 39 Descriptive Statistics, 39, 41, 46, 51, 56, 58, 63, 70, 71, 75, 78, 80,81 design effect, 107 Desil, 39, 49 diagram batang, 40, 66, 68 garis, 65 lingkaran, 65, 67

Diagram, 65, 66, 67 Dukungan Teknis, 200 duplikasi data, 25, 26, 28 Edward Demins, 90 *ellipsis*, 17, 18 expert judgement, 90 Explore, 39, 77, 78 extreme outlier, 79 Frequencies, 39, 41, 46, 51, 56, 58, 63, 70 Friedman, 139 Gamma, 169, 172 histogram, 65, 68, 70 Histogram, 68 **Identify Duplicate Cases**, 26 Index of Qualitative Variation, 39, 55 inner fence, 79 Intallation Manual, 176 Intel. 175 Interguartile Range, 39, 55 IQV, 43, 55, 56, 58, 59 Jaspen's coefficient of multiserial association, 149 Jaspen's M, 149, 150, 152 Jaspen's M Analysis, 152 Iendela Pembuka, 176, 205 Utama, 2, 205 Jenis Data, 9 Karl Pearson, 68 kasus duplikat, 25 kelancipan, 61 kelas interval, 68, 69 kemiringan, 59 Koefisien Keruncingan, 62 koefisien korelasi, 163 koefisien korelasi, 152

Koefisien Kurtosis Persentil, 62 korelasi, 110 Eta, 155, 156 korelasi **Spearman**, 165 kriteria Guilford, 159 Kruskal Wallis, 127 Kuartil, 39, 48, 49 Kurtosis, 39, 61, 62, 64, 71 Kurtosis Fisher-Pearson, 62, 63 Kurtosis Persentil, 63 label, 5 Label, 11, 13, 17 leptokurtik, 61 Manajemen Basisdata, 1 Manajemen Modul, 1 Mann Whitney, 119 McNemar, 135, 138 Mean, 39, 44, 47, 48, 54, 71, 75, 92, 100, 108 Measure, 11, 14, 18, 37 Median, 39, 44, 45, 47, 48 Memasukkan Data, 7, 19 Membuka dan Menutup Tabel, 2 Menetapkan Struktur, 7 Mengatur Urutan Data, 21 Menghitung Variabel, 28 Mengidentifikasi Data Duplikat, 25 Menu-bar, 1 Menyimpan Tabel, 6 mesokurtik, 61 Microsoft Visual C++, 177 mild outlier, 79 *Missing*, 11, 14, 17, 18 Modus, 39, 44, 45, 47, 48 MS-Excel, 20 MS-Word, 20 multimodal, 45 MySQL Client, 189, 191 Community Server, 177

Connector, 175, 176, 191, 199, 201,202 Enterprise, 181 Instance, 182 Server, 176, 177, 179, 180, 182, 185, 186, 187, 189, 191 Setup, 177 MySQL Server, 175, 184, 190 Name, 10, 13, 16, 187, 244 Nilai Maksimum, 54 Nilai minimun, 54 no mode, 45 Nonparametric Test, 91, 93, 95, 98, 101, 103, 111, 115, 118, 122, 126, 130, 134, 138, 141, 146 Numeric, 9, 10, 13 ODBC, 175, 176, 191, 201, 202 Organization, 197 outer fence, 79 password, 182, 185 Password, 204 Pearson's r, 152 Pemilihan Kasus, 22 Percentile, 50, 52 Persentil, 39, 50, 51 Petunjuk Instalasi, 176, 200 pie, 65, 67, 70 Pie Chart, 67 platikurtik, 61 *Port*, 204 Prosesor, 175 Q Cochran, 142 Quartile, 48, 52 RAM, 175 Random Generator, 111 *Range*, 39, 54 rata-rata nilai, 44, 129 raw data, 39 raw scores, 73 regresi, 110 remote machines, 185 ringkasan statistik, 39, 70, 77

sampling acak sederhana, 90, 92, 94 sampling acak sederhana, 107, 109 sampling klaster, 107, 108 Sampling sistematik, 109 sampling stratifikasi, 97, 100 Security Settings, 185 Select Cases, 22, 23 Select Table, 3, 33, 34, 36 Semi Interquartile Range, 39 Semi-Interguartile Range, 55 sensus, 39 Service Name, 184 Simpangan Baku, 54 Simple Random Sampling, 88 Sistem Operasi, 175 skala interval, 7, 149, 153 nominal, 153, 158 ordinal, 158 pengukuran, 7, 10, 119, 123, 127, 131, 135, 161, 165, 169 Skala interval, 8 nominal. 7 ordinal, 8 ratio.8 skala nominal, 7 skala ordinal, 7, 139, 149 skala pengukuran nominal, 142 ordinal, 142 Skewness, 39, 59, 64, 71 Skewness Bowley, 60 Skewness Fisher-Pearson, 60, 61 Skewness Moment, 60, 61 Skewness Pearson I, 59, 60 Skewness Pearson II, 60 Skewness Percentile, 60 Skewness Percentile, 60 skor mentah, 73, 74 skor Z, 70, 72

Sort Cases, 21 Spearman, 168 Standar deviasi, 39 Standar Deviasi, 53, 54 Standard Configuration, 183 standard score, 70, 72, 76 statistik deskriptif, 39 Status-bar, 2 Stratified Sampling, 96 String, 9, 10, 11, 13 Struktur Data, 10 Struktur Direktori, 175 summary statistics, 39 survey, 39, 107 Systematic Sampling, 108, 110 tabel chi-square, 115, 125, 137, 145, 163 tabulasi silang, 80 Task bar, 186 Task Manager, 186 TCP/IP Server, 204 **Technical Support**, 176 Tipe Setup, 178 Tool bar, 1 Transform, 29 *Type*, 10, 13, 16, 135, 138, 146 *Typical*, 178, 179 Uji chi-kuadrat, 113 Uji Eta, 153 Uji Friedman, 139 uji kecocokan distribusi, 113 Uji Kruskal Wallis H, 127 Uji Mann Whitney, 119 Uji McNemar, 135 Uji Q Cochran, 142 Uji Theta, 155, 158 Uji Wilcoxon, 131 ukuran gejala pusat, 39, 43, 44, 46, 47, 48,70 Ukuran dispersi, 39, 53 distribusi, 39

letak atau posisi, 48 ukuran dispersi, 39, 43, 53, 55, 56, 57, 59, 70 ukuran distribusi, 39, 43, 59, 63, 64, 65, 70 Ukuran gejala pusat, 39, 43 ukuran letak, 39, 43, 48, 51, 52, 53 Ukuran letak atau posisi, 39 ukuran statistik, 39, 46, 51, 56, 58, 63, 71, 75 unimodal, 45 Unpad SAS, 1, 2, 4, 7, 10, 11, 20, 26, 39, 43, 46, 48, 51, 53, 56, 57, 58, 59, 63, 65, 66, 67, 68, 71, 75, 78, 80, 115, 118, 122, 126, 130, 134, 138, 141, 146, 157, 160, 164, 168, 172, 175,

176, 177, 186, 191, 195, 201, 204, 205, 243 Unpad SAS Modules, 176 User, 197, 204 User Name, 197 Values, 11, 14, 17, 18 *Variable View*, 4, 5, 14, 15 Varians, 39, 53 width, 9, 11 *Width*, 11, 13, 17 Wilcoxon, 131 Windows 32 bits, 201, 202 64 bits, 201, 202 PATH, 184, 189 Service, 184 Taskbar, 204 Z score, 73

Lampiran

7	,0(00	,001		,0	02	,0	03	,004	
2	Luas	Ordinat								
0,00	0,50000	0,39886	0,50040	0,39886	0,50080	0,39886	0,50120	0,39886	0,50160	0,39886
0,01	0,50399	0,39884	0,50439	0,39884	0,50479	0,39883	0,50519	0,39883	0,50559	0,39882
0,02	0,50798	0,39878	0,50838	0,39877	0,50878	0,39877	0,50917	0,39876	0,50957	0,39875
0,03	0,51197	0,39868	0,51237	0,39867	0,51276	0,39866	0,51316	0,39864	0,51356	0,39863
0,04	0,51595	0,39854	0,51635	0,39853	0,51675	0,39851	0,51715	0,39849	0,51755	0,39848
0,05	0,51994	0,39836	0,52034	0,39834	0,52074	0,39832	0,52113	0,39830	0,52153	0,39828
0,06	0,52392	0,39814	0,52432	0,39812	0,52472	0,39810	0,52512	0,39807	0,52551	0,39805
0,07	0,52790	0,39789	0,52830	0,39786	0,52870	0,39783	0,52910	0,39780	0,52949	0,39777
0,08	0,53188	0,39759	0,53228	0,39756	0,53268	0,39752	0,53307	0,39749	0,53347	0,39746
0,09	0,53586	0,39725	0,53625	0,39721	0,53665	0,39718	0,53705	0,39714	0,53745	0,39710
0,10	0,53983	0,39687	0,54022	0,39683	0,54062	0,39679	0,54102	0,39675	0,54142	0,39671
0,11	0,54380	0,39646	0,54419	0,39641	0,54459	0,39637	0,54498	0,39632	0,54538	0,39628
0,12	0,54776	0,39600	0,54815	0,39595	0,54855	0,39590	0,54895	0,39586	0,54934	0,39581
0,13	0,55172	0,39551	0,55211	0,39545	0,55251	0,39540	0,55290	0,39535	0,55330	0,39530
0,14	0,55567	0,39497	0,55607	0,39492	0,55646	0,39486	0,55685	0,39480	0,55725	0,39475
0,15	0,55962	0,39440	0,56001	0,39434	0,56041	0,39428	0,56080	0,39422	0,56120	0,39416
0,16	0,56356	0,39379	0,56395	0,39373	0,56435	0,39366	0,56474	0,39360	0,56513	0,39353
0,17	0,56749	0,39314	0,56789	0,39307	0,56828	0,39301	0,56867	0,39294	0,56907	0,39287
0,18	0,57142	0,39245	0,57182	0,39238	0,57221	0,39231	0,57260	0,39224	0,57299	0,39217
0,19	0,57535	0,39173	0,57574	0,39165	0,57613	0,39158	0,57652	0,39150	0,57691	0,39143
0,20	0,57926	0,39096	0,57965	0,39089	0,58004	0,39081	0,58043	0,39073	0,58082	0,39065
0,21	0,58317	0,39016	0,58356	0,39008	0,58395	0,39000	0,58434	0,38992	0,58473	0,38983
0,22	0,58706	0,38933	0,58745	0,38924	0,58784	0,38915	0,58823	0,38907	0,58862	0,38898
0,23	0,59095	0,38845	0,59134	0,38836	0,59173	0,38827	0,59212	0,38818	0,59251	0,38809
0,24	0,59483	0,38754	0,59522	0,38745	0,59561	0,38735	0,59600	0,38726	0,59638	0,38716
0,25	0,59871	0,38659	0,59909	0,38649	0,59948	0,38640	0,59987	0,38630	0,60025	0,38620
0,26	0,60257	0,38561	0,60295	0,38551	0,60334	0,38540	0,60372	0,38530	0,60411	0,38520
0,27	0,60642	0,38459	0,60680	0,38448	0,60719	0,38438	0,60757	0,38427	0,60796	0,38417
0,28	0,61026	0,38353	0,61064	0,38342	0,61103	0,38331	0,61141	0,38321	0,61179	0,38310
0,29	0,61409	0,38244	0,61447	0,38233	0,61486	0,38222	0,61524	0,38210	0,61562	0,38199
0,30	0,61791	0,38131	0,61829	0,38120	0,61867	0,38108	0,61906	0,38097	0,61944	0,38085
0,31	0,62172	0,38015	0,62210	0,38003	0,62248	0,37991	0,62286	0,37979	0,62324	0,37968
0,32	0,62552	0,37895	0,62589	0,37883	0,62627	0,3/8/1	0,62665	0,37859	0,62703	0,37847
0,33	0,62930	0,37772	0,62968	0,37760	0,63006	0,37747	0,63043	0,37735	0,63081	0,37722
0,34	0,63307	0,37646	0,63345	0,37633	0,63382	0,37620	0,63420	0,37608	0,63458	0,37595
0,35	0,63683	0,37516	0,63721	0,37503	0,63758	0,37490	0,63796	0,3/4//	0,63833	0,37464
0,36	0,64058	0,37384	0,64095	0,37370	0,64132	0,37357	0,64170	0,37343	0,64207	0,37329
0,37	0,64431	0,37247	0,64468	0,37234	0,64505	0,37220	0,64543	0,37206	0,64580	0,37192
0,38	0,64803	0,37108	0,64840	0,37094	0,64877	0,37080	0,64914	0,37065	0,64951	0,37051
0,39	0,65173	0,36965	0,65210	0,36951	0,65247	0,36936	0,65284	0,36922	0,65321	0,36907
0,40	0,00042	0,30820	0,000/9	0,30805	0,00010	0,30790	0,00000	0,30775	0,00009	0,30700
0,41	0,00910	0,000/1	0,00940	0,00000	0,00903	0.26400	0,00020	0,30020	0,00000	0,30010
0,42	0,00270	0,36364	0,00312	0,30304	0,00349	0,30400	0,00305	0,304/3	0,00422	0,30437
0,43	0,00040	0,30304	0,00077	0,00040	0,00713	0,00000	0,00749	0,30317	0,00700	0,30301
0,44	0.67364	0,30200	0,07039	0,30190	0.67/37	0,00174	0.67/72	0,30130	0.67500	0,00142
0,40	0.6770/	0,00040	0,07401	0,30029	0.67706	0,30013	0,07473	0,00997	0.67869	0,35900
0,40	0,01124	0,0000Z	0,01100	0,00000	0,01100	0,00049	0,01002	0,00002	0,01000	0,00010

LAMPIRAN I: TABEL DISTRIBUSI NORMAL

7	,0	00	,001		,0	02	,003		,004	
2	Luas	Ordinat								
0,47	0,68082	0,35715	0,68118	0,35699	0,68154	0,35682	0,68189	0,35665	0,68225	0,35648
0,48	0,68439	0,35546	0,68474	0,35529	0,68510	0,35512	0,68545	0,35495	0,68581	0,35478
0,49	0,68793	0,35374	0,68829	0,35357	0,68864	0,35339	0,68899	0,35322	0,68935	0,35305
0,50	0,69146	0,35199	0,69181	0,35182	0,69217	0,35164	0,69252	0,35147	0,69287	0,35129
0,51	0,69497	0,35022	0,69532	0,35004	0,69567	0,34986	0,69602	0,34968	0,69637	0,34950
0,52	0,69847	0,34842	0,69882	0,34824	0,69916	0,34806	0,69951	0,34788	0,69986	0,34770
0,53	0,70194	0,34660	0,70229	0,34641	0,70264	0,34623	0,70298	0,34605	0,70333	0,34586
0,54	0,70540	0,34475	0,70575	0,34456	0,70609	0,34438	0,70644	0,34419	0,70678	0,34400
0,55	0,70884	0,34287	0,70918	0,34269	0,70953	0,34250	0,70987	0,34231	0,71021	0,34212
0,56	0,71226	0,34098	0,71260	0,34079	0,71294	0,34059	0,71328	0,34040	0,71362	0,34021
0,57	0,71566	0,33906	0,71600	0,33886	0,71634	0,33867	0,71668	0,33848	0,71702	0,33828
0,58	0,71904	0,33711	0,71938	0,33692	0,71972	0,33672	0,72005	0,33652	0,72039	0,33633
0,59	0,72240	0,33515	0,72274	0,33495	0,72307	0,33475	0,72341	0,33455	0,72374	0,33435
0,60	0,72575	0,33316	0,72608	0,33296	0,72641	0,33276	0,72675	0,33256	0,72708	0,33236
0,61	0,72907	0,33115	0,72940	0,33095	0,72973	0,33074	0,73006	0,33054	0,73039	0,33034
0,62	0,73237	0,32912	0,73270	0,32891	0,73303	0,32871	0,73336	0,32850	0,73369	0,32830
0,63	0,73565	0,32707	0,73598	0,32686	0,73631	0,32665	0,73663	0,32645	0,73696	0,32624
0,64	0,73891	0,32500	0,73924	0,32479	0,73956	0,32458	0,73989	0,32437	0,74021	0,32416
0,65	0,74215	0,32291	0,74248	0,32270	0,74280	0,32249	0,74312	0,32228	0,74344	0,32207
0,66	0,74537	0,32080	0,74569	0,32059	0,74601	0,32038	0,74633	0,32016	0,74665	0,31995
0,67	0,74857	0,31867	0,74889	0,31846	0,74921	0,31825	0,74953	0,31803	0,74984	0,31782
0,68	0,75175	0,31653	0,75206	0,31631	0,75238	0,31610	0,75270	0,31588	0,75301	0,31567
0,69	0,75490	0,31437	0,75522	0,31415	0,75553	0,31393	0,75585	0,31372	0,75616	0,31350
0,70	0,75804	0,31219	0,75835	0,31197	0,75866	0,31175	0,75897	0,31153	0,75928	0,31132
0,71	0,76115	0,31000	0,76146	0,30978	0,76177	0,30956	0,76208	0,30934	0,76239	0,30912
0,72	0,76424	0,30779	0,76455	0,30757	0,76485	0,30735	0,76516	0,30712	0,76547	0,30690
0,73	0,76730	0,30557	0,76761	0,30534	0,76792	0,30512	0,76822	0,30490	0,76853	0,30467
0,74	0,77035	0,30333	0,77065	0,30310	0,77096	0,30288	0,77126	0,30265	0,77156	0,30243
0,75	0,77337	0,30108	0,77367	0,30085	0,77397	0,30062	0,77428	0,30040	0,77458	0,30017
0,76	0,77637	0,29881	0,77667	0,29859	0,77697	0,29836	0,77727	0,29813	0,77757	0,29790
0,77	0,77935	0,29654	0,77965	0,29631	0,77994	0,29608	0,78024	0,29585	0,78053	0,29562
0,78	0,78230	0,29425	0,78260	0,29402	0,78289	0,29379	0,78319	0,29356	0,78348	0,29333
0,79	0,78524	0,29195	0,78553	0,29171	0,78582	0,29148	0,78611	0,29125	0,78640	0,29102
0,80	0,78814	0,28963	0,78843	0,28940	0,78872	0,28917	0,78901	0,28894	0,78930	0,28871
0,81	0,79103	0,28731	0,79132	0,28708	0,79160	0,28685	0,79189	0,28661	0,79218	0,28638
0,82	0,79389	0,28498	0,79418	0,28475	0,79446	0,28451	0,79475	0,28428	0,79503	0,28404
0,83	0,79673	0,28264	0,79701	0,28240	0,79730	0,28217	0,79758	0,28193	0,79786	0,28170
0,84	0,79955	0,28029	0,79983	0,28005	0,80011	0,27982	0,80039	0,27958	0,80067	0,27934
0,85	0,80234	0,27793	0,80262	0,27769	0,80289	0,27746	0,80317	0,27722	0,80345	0,27698
0,86	0,80511	0,27556	0,80538	0,27533	0,80566	0,27509	0,80593	0,27485	0,80621	0,27461
0,87	0,80785	0,27319	0,80812	0,27295	0,80840	0,27271	0,80867	0,27248	0,80894	0,27224
0,88	0,81057	0,27081	0,81084	0,27057	0,81111	0,27033	0,81138	0,27009	0,81165	0,26986
0,89	0,81327	0,26842	0,81354	0,26818	0,81380	0,26795	0,81407	0,26771	0,81434	0,26747
0,90	0,81594	0,26603	0,81621	0,26579	0,81647	0,26555	0,81674	0,26531	0,81700	0,26507
0,91	0,81859	0,26363	0,81885	0,26340	0,81912	0,26316	0,81938	0,26292	0,81964	0,26268
0,92	0,82121	0,26123	0,82147	0,26099	0,82174	0,26075	0,82200	0,26051	0,82226	0,26027
0,93	0,82381	0,25883	0,82407	0,25859	0,82433	0,25835	0,82459	0,25811	0,82485	0,25787
0,94	0,82639	0,25642	0,82665	0,25618	0,82690	0,25594	0,82716	0,25570	0,82742	0,25546
0,95	0,82894	0,25401	0,82920	0,25377	0,82945	0,25353	0,82970	0,25328	0,82996	0,25304
0,96	0,83147	0,25159	0,83172	0,25135	0,83198	0,25111	0,83223	0,25087	0,83248	0,25063

-	0,	00	0,	01	0,	02	0,	03	0,	04
Z	Luas	Ordinat								
0.97	0.83398	0.24918	0.83423	0.24894	0.83447	0.24869	0.83472	0.24845	0.83497	0.24821
0,98	0.83646	0.24676	0,83670	0,24652	0.83695	0.24628	0,83720	0,24603	0.83744	0.24579
0.99	0.83891	0.24434	0.83916	0.24410	0.83940	0.24386	0.83965	0.24362	0.83989	0.24337
1.00	0.84134	0.24192	0.84159	0.24168	0.84183	0.24144	0.84207	0.24120	0.84231	0.24095
1.01	0.84375	0.23950	0.84399	0.23926	0.84423	0.23902	0.84447	0.23878	0.84471	0.23854
1.02	0.84614	0.23708	0.84637	0.23684	0.84661	0.23660	0.84685	0.23636	0.84708	0.23612
1.03	0.84849	0.23467	0.84873	0.23442	0.84896	0.23418	0.84920	0.23394	0.84943	0.23370
1.04	0.85083	0.23225	0.85106	0.23201	0.85129	0.23177	0.85153	0.23153	0.85176	0.23128
1.05	0.85314	0.22984	0.85337	0.22959	0.85360	0.22935	0.85383	0.22911	0.85406	0.22887
1.06	0.85543	0.22742	0.85566	0.22718	0.85588	0.22694	0.85611	0.22670	0.85634	0.22646
1.07	0.85769	0.22501	0.85792	0.22477	0.85814	0.22453	0.85836	0.22429	0.85859	0.22405
1.08	0.85993	0.22261	0.86015	0.22237	0.86037	0.22213	0.86060	0.22189	0.86082	0.22165
1.09	0.86214	0.22021	0.86236	0.21997	0.86258	0.21973	0.86280	0.21949	0.86302	0.21925
1.10	0.86433	0.21781	0.86455	0.21757	0.86477	0.21733	0.86499	0.21709	0.86520	0.21685
1.11	0.86650	0.21541	0.86672	0.21518	0.86693	0.21494	0.86715	0.21470	0.86736	0.21446
1.12	0.86864	0.21303	0.86886	0.21279	0.86907	0.21255	0.86928	0.21231	0.86949	0.21207
1.13	0.87076	0.21064	0.87097	0.21041	0.87118	0.21017	0.87139	0.20993	0.87160	0.20969
1.14	0.87286	0.20827	0.87307	0.20803	0.87327	0.20779	0.87348	0.20755	0.87369	0.20732
1.15	0.87493	0.20589	0.87513	0.20566	0.87534	0.20542	0.87554	0.20518	0.87575	0.20495
1.16	0.87698	0.20353	0.87718	0.20329	0.87738	0.20306	0.87759	0.20282	0.87779	0.20259
1.17	0.87900	0.20117	0.87920	0.20094	0.87940	0.20070	0.87960	0.20047	0.87980	0.20023
1,18	0.88100	0,19882	0.88120	0,19859	0.88140	0,19835	0.88160	0,19812	0.88179	0,19789
1.19	0.88298	0.19648	0.88317	0.19625	0.88337	0.19601	0.88357	0.19578	0.88376	0.19555
1,20	0.88493	0,19415	0.88512	0,19391	0.88532	0,19368	0.88551	0,19345	0.88571	0,19322
1,21	0,88686	0,19182	0,88705	0,19159	0,88724	0,19136	0,88744	0,19113	0,88763	0,19089
1,22	0,88877	0,18951	0,88896	0,18927	0,88915	0,18904	0,88934	0,18881	0,88952	0,18858
1,23	0,89065	0,18720	0,89084	0,18697	0,89103	0,18674	0,89121	0,18651	0,89140	0,18628
1,24	0,89251	0,18490	0,89270	0,18467	0,89288	0,18444	0,89307	0,18421	0,89325	0,18398
1,25	0,89435	0,18261	0,89453	0,18238	0,89472	0,18216	0,89490	0,18193	0,89508	0,18170
1,26	0,89617	0,18033	0,89635	0,18011	0,89653	0,17988	0,89671	0,17965	0,89688	0,17943
1,27	0,89796	0,17807	0,89814	0,17784	0,89831	0,17762	0,89849	0,17739	0,89867	0,17716
1,28	0,89973	0,17581	0,89990	0,17559	0,90008	0,17536	0,90025	0,17514	0,90043	0,17491
1,29	0,90147	0,17357	0,90165	0,17334	0,90182	0,17312	0,90199	0,17290	0,90217	0,17267
1,30	0,90320	0,17133	0,90337	0,17111	0,90354	0,17089	0,90371	0,17067	0,90388	0,17044
1,31	0,90490	0,16911	0,90507	0,16889	0,90524	0,16867	0,90541	0,16845	0,90558	0,16823
1,32	0,90658	0,16690	0,90675	0,16668	0,90692	0,16646	0,90708	0,16624	0,90725	0,16602
1,33	0,90824	0,16471	0,90841	0,16449	0,90857	0,16427	0,90873	0,16405	0,90890	0,16383
1,34	0,90988	0,16252	0,91004	0,16230	0,91020	0,16209	0,91036	0,16187	0,91053	0,16165
1,35	0,91149	0,16035	0,91165	0,16013	0,91181	0,15992	0,91197	0,15970	0,91213	0,15949
1,36	0,91309	0,15819	0,91324	0,15798	0,91340	0,15776	0,91356	0,15755	0,91372	0,15733
1,37	0,91466	0,15605	0,91481	0,15583	0,91497	0,15562	0,91512	0,15541	0,91528	0,15519
1,38	0,91621	0,15392	0,91636	0,15370	0,91651	0,15349	0,91667	0,15328	0,91682	0,15307
1,39	0,91774	0,15180	0,91789	0,15159	0,91804	0,15138	0,91819	0,15117	0,91834	0,15096
1,40	0,91924	0,14970	0,91939	0,14949	0,91954	0,14928	0,91969	0,14907	0,91984	0,14886
1,41	0,92073	0,14761	0,92088	0,14740	0,92103	0,14719	0,92117	0,14699	0,92132	0,14678
1,42	0,92220	0,14553	0,92234	0,14533	0,92249	0,14512	0,92263	0,14492	0,92278	0,14471
1,43	0,92364	0,14348	0,92378	0,14327	0,92393	0,14307	0,92407	0,14286	0,92421	0,14266
1,44	0,92507	0,14143	0,92521	0,14123	0,92535	0,14102	0,92549	0,14082	0,92563	0,14062
1,45	0,92647	0,13940	0,92661	0,13920	0,92675	0,13900	0,92689	0,13880	0,92703	0,13860
1,46	0,92785	0,13739	0,92799	0,13719	0,92813	0,13699	0,92827	0,13679	0,92840	0,13659

7	,0	00	,0	,001		,002		,003		04
2	Luas	Ordinat								
1,47	0,92922	0,13539	0,92935	0,13519	0,92949	0,13499	0,92962	0,13479	0,92976	0,13460
1,48	0,93056	0,13341	0,93070	0,13321	0,93083	0,13301	0,93096	0,13282	0,93110	0,13262
1,49	0,93189	0,13144	0,93202	0,13125	0,93215	0,13105	0,93228	0,13086	0,93241	0,13066
1,50	0,93319	0,12949	0,93332	0,12930	0,93345	0,12910	0,93358	0,12891	0,93371	0,12872
1,51	0,93448	0,12756	0,93461	0,12736	0,93473	0,12717	0,93486	0,12698	0,93499	0,12679
1,52	0,93574	0,12564	0,93587	0,12545	0,93600	0,12526	0,93612	0,12507	0,93625	0,12488
1,53	0,93699	0,12374	0,93712	0,12355	0,93724	0,12336	0,93736	0,12317	0,93749	0,12298
1,54	0,93822	0,12185	0,93834	0,12167	0,93846	0,12148	0,93858	0,12129	0,93871	0,12110
1,55	0,93943	0,11998	0,93955	0,11980	0,93967	0,11961	0,93979	0,11943	0,93991	0,11924
1,56	0,94062	0,11813	0,94074	0,11795	0,94086	0,11777	0,94097	0,11758	0,94109	0,11740
1,57	0,94179	0,11630	0,94191	0,11612	0,94202	0,11593	0,94214	0,11575	0,94226	0,11557
1,58	0,94295	0,11448	0,94306	0,11430	0,94318	0,11412	0,94329	0,11394	0,94340	0,11376
1,59	0,94408	0,11268	0,94420	0,11250	0,94431	0,11232	0,94442	0,11214	0,94453	0,11197
1,60	0,94520	0,11090	0,94531	0,11072	0,94542	0,11054	0,94553	0,11037	0,94564	0,11019
1,61	0,94630	0,10913	0,94641	0,10896	0,94652	0,10878	0,94663	0,10861	0,94674	0,10843
1,62	0,94738	0,10738	0,94749	0,10721	0,94760	0,10704	0,94771	0,10686	0,94781	0,10669
1,63	0,94845	0,10565	0,94855	0,10548	0,94866	0,10531	0,94877	0,10514	0,94887	0,10497
1,64	0,94950	0,10394	0,94960	0,10377	0,94970	0,10360	0,94981	0,10343	0,94991	0,10326
1,65	0,95053	0,10224	0,95063	0,10208	0,95073	0,10191	0,95083	0,10174	0,95094	0,10157
1,66	0,95154	0,10057	0,95164	0,10040	0,95174	0,10023	0,95184	0,10007	0,95194	0,09990
1,67	0,95254	0,09891	0,95264	0,09874	0,95274	0,09858	0,95284	0,09841	0,95293	0,09825
1,68	0,95352	0,09726	0,95362	0,09710	0,95372	0,09694	0,95381	0,09677	0,95391	0,09661
1,69	0,95449	0,09564	0,95458	0,09548	0,95468	0,09531	0,95477	0,09515	0,95487	0,09499
1,70	0,95543	0,09403	0,95553	0,09387	0,95562	0,09371	0,95572	0,09355	0,95581	0,09339
1,71	0,95637	0,09244	0,95646	0,09228	0,95655	0,09212	0,95664	0,09197	0,95674	0,09181
1,72	0,95728	0,09087	0,95737	0,09071	0,95747	0,09056	0,95756	0,09040	0,95765	0,09024
1,73	0,95818	0,08931	0,95827	0,08916	0,95836	0,08901	0,95845	0,08885	0,95854	0,08870
1,74	0,95907	0,08778	0,95916	0,08763	0,95925	0,08747	0,95933	0,08732	0,95942	0,08717
1,75	0,95994	0,08626	0,96003	0,08611	0,96011	0,08596	0,96020	0,08581	0,96028	0,08566
1,76	0,96080	0,08476	0,96088	0,08461	0,96097	0,08446	0,96105	0,08431	0,96113	0,08416
1,77	0,96164	0,08328	0,96172	0,08313	0,96180	0,08298	0,96189	0,08284	0,96197	0,08269
1,78	0,96246	0,08181	0,96254	0,08167	0,96263	0,08152	0,96271	0,08138	0,96279	0,08123
1,79	0,96327	0,08036	0,96335	0,08022	0,96343	0,08008	0,96351	0,07993	0,96359	0,07979
1,80	0,96407	0,07893	0,96415	0,07879	0,96423	0,07865	0,96431	0,07851	0,96438	0,07837
1,81	0,96485	0,07752	0,96493	0,07738	0,96501	0,07724	0,96508	0,07710	0,96516	0,07696
1,82	0,96562	0,07613	0,96570	0,07599	0,96577	0,07585	0,96585	0,07571	0,96592	0,07558
1,83	0,96638	0,07475	0,96645	0,07461	0,96652	0,07448	0,96660	0,07434	0,96667	0,07421
1,84	0,96712	0,07339	0,96719	0,07326	0,96726	0,07312	0,96734	0,07299	0,96741	0,07285
1,85	0,96784	0,07205	0,96792	0,07192	0,96799	0,07178	0,96806	0,07165	0,96813	0,07152
1,86	0,96856	0,07073	0,96863	0,07059	0,96870	0,07046	0,96877	0,07033	0,96884	0,07020
1,87	0,96926	0,06942	0,96933	0,06929	0,96940	0,06916	0,96947	0,06903	0,96953	0,06890
1,88	0,96995	0,06813	0,97001	0,06800	0,97008	0,06787	0,97015	0,06775	0,97022	0,06762
1,89	0,97062	0,06686	0,97069	0,06673	0,97075	0,06661	0,97082	0,06648	0,97089	0,06635
1,90	0,97128	0,06560	0,97135	0,06548	0,97141	0,06535	0,97148	0,06523	0,97154	0,06511
1,91	0,97193	0,06436	0,97200	0,06424	0,97206	0,06412	0,97213	0,06400	0,97219	0,06387
1,92	0,97257	0,06314	0,97263	0,06302	0,97270	0,06290	0,97276	0,06278	0,97282	0,06266
1,93	0,97320	0,06194	0,97326	0,06182	0,97332	0,06170	0,97338	0,06158	0,97344	0,06146
1,94	0,97381	0,06075	0,97387	0,06064	0,97393	0,06052	0,97399	0,06040	0,97405	0,06028
1,95	0,97441	0,05958	0,97447	0,05947	0,97453	0,05935	0,97459	0,05923	0,97465	0,05912
1,96	0,97500	0,05843	0,97506	0,05831	0,97512	0,05820	0,97518	0,05809	0,97523	0,05797

-	0,	00	0,	01	0,	02	0,	03	0,	04
Z	Luas	Ordinat								
1,97	0,97558	0,05729	0,97564	0,05718	0,97570	0,05707	0,97575	0,05695	0,97581	0,05684
1,98	0,97615	0.05617	0.97620	0.05606	0,97626	0.05595	0,97632	0.05584	0.97637	0.05573
1,99	0,97670	0.05507	0.97676	0.05496	0,97681	0.05485	0,97687	0.05474	0,97692	0.05463
2,00	0,97725	0,05398	0,97730	0,05387	0,97736	0,05376	0,97741	0,05366	0,97746	0,05355
2,01	0,97778	0.05291	0.97784	0.05280	0.97789	0.05270	0,97794	0.05259	0.97800	0.05248
2,02	0,97831	0,05185	0,97836	0,05175	0,97841	0,05164	0,97846	0,05154	0,97851	0,05144
2,03	0,97882	0.05081	0.97887	0.05071	0,97892	0.05061	0,97897	0.05050	0,97902	0,05040
2,04	0,97932	0.04979	0,97937	0.04969	0,97942	0.04959	0,97947	0.04949	0,97952	0,04939
2,05	0,97982	0.04878	0,97987	0.04868	0,97992	0.04858	0,97996	0.04848	0,98001	0,04838
2,06	0,98030	0.04779	0.98035	0.04769	0,98040	0.04759	0,98044	0.04750	0,98049	0,04740
2,07	0,98077	0.04681	0,98082	0.04672	0,98087	0.04662	0,98091	0.04652	0,98096	0,04643
2.08	0.98124	0.04585	0.98128	0.04576	0.98133	0.04566	0.98137	0.04557	0.98142	0.04547
2,09	0,98169	0.04491	0.98174	0.04481	0,98178	0.04472	0.98183	0.04462	0.98187	0.04453
2.10	0.98214	0.04397	0.98218	0.04388	0.98222	0.04379	0.98227	0.04370	0.98231	0.04361
2,11	0,98257	0.04306	0.98261	0.04297	0.98266	0.04288	0.98270	0.04279	0.98274	0,04270
2,12	0,98300	0.04216	0.98304	0.04207	0,98308	0,04198	0,98312	0.04189	0,98316	0,04180
2.13	0.98341	0.04127	0.98346	0.04118	0.98350	0.04110	0.98354	0.04101	0.98358	0.04092
2,14	0,98382	0,04040	0.98386	0,04031	0,98390	0.04023	0,98394	0.04014	0,98398	0,04005
2.15	0.98422	0.03954	0.98426	0.03946	0.98430	0.03937	0.98434	0.03929	0.98438	0.03920
2.16	0.98461	0.03870	0.98465	0.03862	0.98469	0.03853	0.98473	0.03845	0.98477	0.03837
2.17	0.98500	0.03787	0.98503	0.03779	0.98507	0.03771	0.98511	0.03762	0.98515	0.03754
2,18	0,98537	0.03706	0.98541	0.03697	0.98545	0.03689	0.98548	0.03681	0.98552	0.03673
2.19	0.98574	0.03625	0.98577	0.03618	0.98581	0.03610	0.98585	0.03602	0.98588	0.03594
2,20	0,98610	0.03547	0.98613	0.03539	0,98617	0.03531	0.98620	0.03523	0,98624	0.03516
2,21	0,98645	0.03469	0,98648	0.03462	0,98652	0.03454	0.98655	0.03446	0,98659	0.03439
2,22	0,98679	0.03393	0.98682	0.03386	0,98686	0.03378	0,98689	0.03371	0,98693	0.03363
2,23	0,98713	0.03319	0,98716	0.03311	0,98719	0.03304	0.98723	0.03297	0,98726	0.03289
2,24	0,98745	0.03245	0,98749	0.03238	0,98752	0.03231	0.98755	0.03224	0,98758	0,03216
2,25	0,98778	0.03173	0,98781	0.03166	0,98784	0.03159	0.98787	0.03152	0,98790	0,03145
2,26	0,98809	0.03103	0,98812	0.03096	0,98815	0.03089	0,98818	0.03082	0,98821	0,03075
2,27	0,98840	0.03033	0.98843	0.03026	0,98846	0,03019	0,98849	0.03012	0,98852	0,03006
2.28	0,98870	0.02965	0.98873	0.02958	0.98876	0.02951	0.98878	0.02945	0,98881	0.02938
2,29	0,98899	0,02898	0,98902	0,02891	0,98905	0,02885	0,98908	0,02878	0,98910	0,02871
2,30	0,98928	0,02832	0,98930	0,02826	0,98933	0,02819	0,98936	0,02813	0,98939	0,02806
2,31	0,98956	0,02768	0,98958	0,02761	0,98961	0,02755	0,98964	0,02748	0,98967	0,02742
2,32	0,98983	0,02704	0,98986	0,02698	0,98988	0,02692	0,98991	0,02685	0,98994	0,02679
2,33	0,99010	0,02642	0,99012	0,02636	0,99015	0,02630	0,99018	0,02624	0,99020	0,02618
2,34	0,99036	0,02581	0,99038	0,02575	0,99041	0,02569	0,99044	0,02563	0,99046	0,02557
2,35	0,99061	0,02521	0,99064	0,02515	0,99066	0,02509	0,99069	0,02504	0,99071	0,02498
2,36	0,99086	0,02463	0,99089	0,02457	0,99091	0,02451	0,99094	0,02445	0,99096	0,02439
2,37	0,99111	0,02405	0,99113	0,02399	0,99115	0,02394	0,99118	0,02388	0,99120	0,02382
2,38	0,99134	0,02349	0,99137	0,02343	0,99139	0,02337	0,99141	0,02332	0,99144	0,02326
2,39	0,99158	0,02293	0,99160	0,02288	0,99162	0,02282	0,99164	0,02277	0,99167	0,02271
2,40	0,99180	0,02239	0,99182	0,02234	0,99185	0,02228	0,99187	0,02223	0,99189	0,02218
2,41	0,99202	0,02186	0,99205	0,02181	0,99207	0,02175	0,99209	0,02170	0,99211	0,02165
2,42	0,99224	0,02134	0,99226	0,02128	0,99228	0,02123	0,99230	0,02118	0,99232	0,02113
2,43	0,99245	0,02083	0,99247	0,02077	0,99249	0,02072	0,99251	0,02067	0,99253	0,02062
2,44	0,99266	0,02032	0,99268	0,02027	0,99270	0,02023	0,99272	0,02018	0,99274	0,02013
2,45	0,99286	0,01983	0,99288	0,01978	0,99290	0,01974	0,99292	0,01969	0,99294	0,01964
2,46	0,99305	0.01935	0,99307	0,01930	0,99309	0,01926	0,99311	0,01921	0,99313	0,01916

-	0,	00	0,	01	0,	02	0,	03	0,	04
2	Luas	Ordinat								
2,47	0,99324	0,01888	0,99326	0,01883	0,99328	0,01879	0,99330	0,01874	0,99332	0,01870
2,48	0,99343	0.01842	0,99345	0.01837	0,99347	0.01833	0,99349	0,01828	0,99350	0,01824
2,49	0,99361	0.01797	0,99363	0.01792	0,99365	0.01788	0,99367	0,01783	0,99368	0,01779
2,50	0,99379	0.01752	0,99381	0,01748	0,99383	0,01744	0,99384	0,01739	0,99386	0,01735
2.51	0.99396	0.01709	0.99398	0.01705	0.99400	0.01701	0.99401	0.01696	0.99403	0.01692
2.52	0.99413	0.01667	0.99415	0.01662	0.99417	0.01658	0.99418	0.01654	0.99420	0.01650
2.53	0.99430	0.01625	0.99431	0.01621	0.99433	0.01617	0.99435	0.01613	0.99436	0.01609
2.54	0.99446	0.01584	0.99447	0.01580	0.99449	0.01576	0.99450	0.01572	0.99452	0.01568
2.55	0.99461	0.01545	0.99463	0.01541	0.99464	0.01537	0.99466	0.01533	0.99468	0.01529
2.56	0.99477	0.01506	0.99478	0.01502	0.99480	0.01498	0.99481	0.01494	0.99483	0.01490
2.57	0.99492	0.01468	0.99493	0.01464	0.99494	0.01460	0.99496	0.01456	0.99497	0.01453
2.58	0.99506	0.01430	0.99507	0.01427	0.99509	0.01423	0.99510	0.01419	0.99512	0.01416
2.59	0.99520	0.01394	0.99522	0.01390	0.99523	0.01387	0.99524	0.01383	0.99526	0.01379
2.60	0.99534	0.01358	0.99535	0.01354	0.99537	0.01351	0.99538	0.01347	0.99539	0.01344
2.61	0.99547	0.01323	0.99549	0.01320	0.99550	0.01316	0.99551	0.01313	0.99553	0.01309
2.62	0.99560	0.01289	0.99562	0.01286	0.99563	0.01282	0.99564	0.01279	0.99565	0.01276
2.63	0.99573	0.01256	0.99574	0.01252	0.99576	0.01249	0.99577	0.01246	0.99578	0.01242
2.64	0.99585	0.01223	0.99587	0.01220	0.99588	0.01216	0.99589	0.01213	0.99590	0.01210
2.65	0.99598	0.01191	0.99599	0.01188	0.99600	0.01185	0.99601	0.01182	0.99602	0.01178
2,66	0,99609	0.01160	0,99610	0.01157	0.99612	0.01154	0,99613	0.01151	0,99614	0.01147
2,67	0.99621	0.01129	0,99622	0.01126	0.99623	0.01123	0.99624	0.01120	0.99625	0.01117
2.68	0.99632	0.01099	0.99633	0.01097	0.99634	0.01094	0.99635	0.01091	0.99636	0.01088
2,69	0.99643	0.01070	0,99644	0.01067	0.99645	0.01065	0,99646	0.01062	0.99647	0.01059
2.70	0.99653	0.01042	0.99654	0.01039	0.99655	0.01036	0.99656	0.01033	0.99657	0.01031
2.71	0.99664	0.01014	0.99665	0.01011	0.99666	0.01009	0.99667	0.01006	0.99668	0.01003
2,72	0.99674	0.00987	0.99675	0.00984	0.99676	0.00982	0.99677	0.00979	0.99678	0.00976
2.73	0.99683	0.00960	0.99684	0.00958	0.99685	0.00955	0.99686	0.00953	0.99687	0.00950
2.74	0.99693	0.00934	0.99694	0.00932	0.99695	0.00929	0.99696	0.00927	0.99697	0.00924
2.75	0.99702	0.00909	0.99703	0.00907	0.99704	0.00904	0.99705	0.00902	0.99706	0.00899
2.76	0.99711	0.00884	0.99712	0.00882	0.99713	0.00880	0.99714	0.00877	0.99715	0.00875
2,77	0,99720	0.00860	0,99721	0.00858	0,99721	0.00856	0,99722	0.00853	0,99723	0,00851
2.78	0.99728	0.00837	0.99729	0.00834	0.99730	0.00832	0.99731	0.00830	0.99732	0.00828
2.79	0.99736	0.00814	0.99737	0.00812	0.99738	0.00809	0.99739	0.00807	0.99740	0.00805
2.80	0.99744	0.00791	0.99745	0.00789	0.99746	0.00787	0.99747	0.00785	0.99748	0.00783
2,81	0,99752	0,00769	0,99753	0,00767	0,99754	0,00765	0,99755	0,00763	0,99755	0,00761
2.82	0,99760	0,00748	0,99761	0,00746	0,99761	0,00744	0,99762	0,00742	0,99763	0,00740
2.83	0,99767	0,00727	0,99768	0,00725	0,99769	0,00723	0,99769	0,00721	0,99770	0,00719
2.84	0,99774	0,00707	0,99775	0,00705	0,99776	0,00703	0,99777	0,00701	0,99777	0,00699
2.85	0,99781	0,00687	0,99782	0,00685	0,99783	0,00683	0,99783	0,00681	0,99784	0,00679
2,86	0,99788	0,00668	0,99789	0,00666	0,99790	0,00664	0,99790	0,00662	0,99791	0,00660
2.87	0,99795	0,00649	0,99795	0,00647	0,99796	0,00645	0,99797	0,00643	0,99797	0,00642
2.88	0,99801	0,00631	0,99802	0,00629	0,99802	0,00627	0,99803	0,00625	0,99804	0,00623
2.89	0,99807	0,00613	0,99808	0,00611	0,99809	0,00609	0,99809	0,00607	0,99810	0,00606
2.90	0,99813	0,00595	0,99814	0,00593	0,99815	0,00592	0,99815	0,00590	0,99816	0,00588
2.91	0,99819	0,00578	0,99820	0,00576	0,99820	0,00575	0,99821	0,00573	0,99822	0,00571
2.92	0,99825	0,00561	0,99826	0,00560	0,99826	0,00558	0,99827	0,00557	0,99827	0,00555
2.93	0,99831	0,00545	0,99831	0,00544	0,99832	0,00542	0,99832	0,00541	0,99833	0,00539
2.94	0,99836	0,00530	0,99836	0,00528	0,99837	0,00526	0,99837	0,00525	0,99838	0,00523
2.95	0,99841	0,00514	0,99842	0,00513	0,99842	0,00511	0,99843	0,00510	0,99843	0,00508
2,96	0,99846	0,00499	0,99847	0,00498	0,99847	0,00496	0,99848	0,00495	0,99848	0,00493

-	0,	00	0,	01	0,	02	0,	03	0,	04
Z	Luas	Ordinat								
2,97	0.99851	0.00485	0.99852	0.00483	0.99852	0.00482	0.99853	0.00480	0.99853	0.00479
2,98	0,99856	0,00470	0,99856	0,00469	0,99857	0.00468	0,99857	0.00466	0,99858	0,00465
2,99	0,99861	0.00457	0,99861	0,00455	0,99861	0,00454	0,99862	0.00452	0,99862	0,00451
3,00	0,99865	0,00443	0,99865	0,00442	0,99866	0,00440	0,99866	0,00439	0,99867	0,00438
3.01	0,99869	0.00430	0.99870	0.00429	0,99870	0.00427	0.99871	0.00426	0,99871	0,00425
3,02	0,99874	0,00417	0,99874	0,00416	0,99874	0,00415	0,99875	0.00413	0,99875	0,00412
3,03	0,99878	0,00405	0,99878	0,00404	0,99879	0,00402	0,99879	0,00401	0,99879	0,00400
3,04	0,99882	0.00393	0,99882	0,00391	0,99882	0.00390	0,99883	0.00389	0,99883	0,00388
3,05	0,99886	0,00381	0,99886	0.00380	0,99886	0.00379	0,99887	0.00377	0,99887	0,00376
3,06	0,99889	0.00369	0,99890	0.00368	0,99890	0.00367	0,99890	0.00366	0,99891	0,00365
3,07	0,99893	0.00358	0,99893	0.00357	0,99894	0.00356	0,99894	0.00355	0,99894	0,00354
3.08	0.99896	0.00347	0.99897	0.00346	0.99897	0.00345	0.99898	0.00344	0.99898	0.00343
3.09	0,99900	0.00337	0.99900	0.00336	0,99901	0.00335	0,99901	0.00334	0,99901	0.00333
3.10	0.99903	0.00327	0.99904	0.00326	0.99904	0.00325	0.99904	0.00324	0.99905	0.00323
3,11	0,99906	0.00317	0.99907	0.00316	0,99907	0.00315	0.99907	0.00314	0,99908	0.00313
3.12	0.99910	0.00307	0.99910	0.00306	0.99910	0.00305	0.99910	0.00304	0.99911	0.00303
3.13	0.99913	0.00297	0.99913	0.00297	0.99913	0.00296	0.99913	0.00295	0.99914	0.00294
3.14	0.99916	0.00288	0.99916	0.00287	0.99916	0.00286	0.99916	0.00286	0.99917	0.00285
3.15	0.99918	0.00279	0.99919	0.00278	0.99919	0.00278	0.99919	0.00277	0.99919	0.00276
3.16	0.99921	0.00271	0.99921	0.00270	0.99922	0.00269	0.99922	0.00268	0.99922	0.00267
3.17	0.99924	0.00262	0.99924	0.00261	0.99924	0.00261	0.99925	0.00260	0.99925	0.00259
3.18	0.99926	0.00254	0.99927	0.00253	0.99927	0.00252	0.99927	0.00252	0.99927	0.00251
3.19	0,99929	0.00246	0,99929	0.00245	0,99929	0.00245	0,99930	0.00244	0,99930	0.00243
3.20	0.99931	0.00238	0.99932	0.00238	0.99932	0.00237	0.99932	0.00236	0.99932	0.00235
3.21	0.99934	0.00231	0.99934	0.00230	0.99934	0.00229	0.99934	0.00229	0.99935	0.00228
3.22	0.99936	0.00224	0.99936	0.00223	0.99936	0.00222	0.99937	0.00221	0.99937	0.00221
3.23	0.99938	0.00216	0.99938	0.00216	0.99939	0.00215	0.99939	0.00214	0.99939	0.00214
3.24	0.99940	0.00210	0.99940	0.00209	0.99941	0.00208	0.99941	0.00208	0.99941	0.00207
3.25	0.99942	0.00203	0.99943	0.00202	0.99943	0.00202	0.99943	0.00201	0.99943	0.00200
3.26	0.99944	0.00196	0.99944	0.00196	0.99945	0.00195	0.99945	0.00194	0.99945	0.00194
3,27	0,99946	0,00190	0.99946	0.00189	0,99947	0.00189	0,99947	0.00188	0,99947	0.00188
3.28	0.99948	0.00184	0.99948	0.00183	0.99948	0.00183	0.99949	0.00182	0.99949	0.00182
3,29	0,99950	0.00178	0.99950	0.00177	0,99950	0.00177	0.99950	0.00176	0,99951	0.00176
3,30	0,99952	0,00172	0,99952	0,00172	0,99952	0,00171	0,99952	0,00171	0,99952	0,00170
3,31	0,99953	0,00167	0,99954	0,00166	0,99954	0,00166	0,99954	0,00165	0,99954	0,00164
3,32	0,99955	0,00161	0,99955	0,00161	0,99955	0,00160	0,99955	0,00160	0,99956	0,00159
3,33	0,99957	0,00156	0,99957	0,00155	0,99957	0,00155	0,99957	0,00154	0,99957	0,00154
3,34	0,99958	0,00151	0,99958	0,00150	0,99958	0,00150	0,99959	0,00149	0,99959	0,00149
3.35	0,99960	0.00146	0.99960	0.00145	0,99960	0.00145	0,99960	0.00144	0,99960	0,00144
3,36	0,99961	0,00141	0,99961	0,00141	0,99961	0,00140	0,99961	0.00140	0,99962	0,00139
3,37	0,99962	0,00136	0,99963	0,00136	0,99963	0,00135	0,99963	0.00135	0,99963	0,00135
3,38	0,99964	0,00132	0,99964	0,00131	0,99964	0,00131	0,99964	0,00131	0,99964	0,00130
3,39	0,99965	0,00127	0,99965	0,00127	0,99965	0,00127	0,99965	0,00126	0,99966	0,00126
3,40	0,99966	0,00123	0,99966	0,00123	0,99967	0,00122	0,99967	0,00122	0,99967	0,00122
3,41	0,99968	0,00119	0,99968	0,00119	0,99968	0,00118	0,99968	0,00118	0,99968	0,00117
3,42	0,99969	0,00115	0,99969	0,00115	0,99969	0,00114	0,99969	0,00114	0,99969	0,00114
3.43	0,99970	0,00111	0,99970	0,00111	0,99970	0,00110	0,99970	0,00110	0,99970	0,00110
3,44	0,99971	0,00107	0,99971	0,00107	0,99971	0,00107	0,99971	0,00106	0,99971	0,00106
3,45	0,99972	0,00104	0,99972	0,00103	0,99972	0,00103	0,99972	0,00103	0,99972	0,00102
3,46	0.99973	0.00100	0.99973	0.00100	0.99973	0.00100	0.99973	0.00099	0.99973	0.00099

7	,0	00	,0	01	,0	02	,0	03	,0	04
2	Luas	Ordinat								
3,47	0,99974	0,00097	0,99974	0,00097	0,99974	0,00096	0,99974	0,00096	0,99974	0,00096
3,48	0,99975	0,00094	0,99975	0,00093	0,99975	0,00093	0,99975	0,00093	0,99975	0,00092
3,49	0,99976	0,00090	0,99976	0,00090	0,99976	0,00090	0,99976	0,00089	0,99976	0,00089
3,50	0,99977	0,00087	0,99977	0,00087	0,99977	0,00087	0,99977	0,00086	0,99977	0,00086
3,51	0,99978	0,00084	0,99978	0,00084	0,99978	0,00084	0,99978	0,00083	0,99978	0,00083
3,52	0,99978	0,00081	0,99979	0,00081	0,99979	0,00081	0,99979	0,00080	0,99979	0,00080
3,53	0,99979	0,00079	0,99979	0,00078	0,99979	0,00078	0,99979	0,00078	0,99980	0,00077
3,54	0,99980	0,00076	0,99980	0,00076	0,99980	0,00075	0,99980	0,00075	0,99980	0,00075
3,55	0,99981	0,00073	0,99981	0,00073	0,99981	0,00073	0,99981	0,00072	0,99981	0,00072
3,56	0,99981	0,00071	0,99982	0,00070	0,99982	0,00070	0,99982	0,00070	0,99982	0,00070
3,57	0,99982	0,00068	0,99982	0,00068	0,99982	0,00068	0,99982	0,00067	0,99982	0,00067
3,58	0,99983	0,00066	0,99983	0,00065	0,99983	0,00065	0,99983	0,00065	0,99983	0,00065
3,59	0,99983	0,00063	0,99984	0,00063	0,99984	0,00063	0,99984	0,00063	0,99984	0,00063
3,60	0,99984	0,00061	0,99984	0,00061	0,99984	0,00061	0,99984	0,00061	0,99984	0,00060
3,61	0,99985	0,00059	0,99985	0,00059	0,99985	0,00059	0,99985	0,00058	0,99985	0,00058
3,62	0,99985	0,00057	0,99985	0,00057	0,99985	0,00057	0,99985	0,00056	0,99985	0,00056
3,63	0,99986	0,00055	0,99986	0,00055	0,99986	0,00054	0,99986	0,00054	0,99986	0,00054
3,64	0,99986	0,00053	0,99986	0,00053	0,99986	0,00053	0,99987	0,00052	0,99987	0,00052
3,65	0,99987	0,00051	0,99987	0,00051	0,99987	0,00051	0,99987	0,00050	0,99987	0,00050
3,66	0,99987	0,00049	0,99987	0,00049	0,99987	0,00049	0,99988	0,00049	0,99988	0,00048
3,67	0,99988	0,00047	0,99988	0.00047	0,99988	0,00047	0,99988	0,00047	0,99988	0,00047
3,68	0,99988	0,00046	0,99988	0,00046	0,99988	0,00045	0,99988	0,00045	0,99989	0,00045
3,69	0,99989	0,00044	0,99989	0,00044	0,99989	0,00044	0,99989	0,00044	0,99989	0,00043
3,70	0,99989	0,00042	0,99989	0,00042	0,99989	0,00042	0,99989	0,00042	0,99989	0,00042
3,71	0,99990	0,00041	0,99990	0,00041	0,99990	0,00041	0,99990	0,00040	0,99990	0,00040
3,72	0,99990	0,00039	0,99990	0,00039	0,99990	0,00039	0,99990	0,00039	0,99990	0,00039
3,73	0,99990	0,00038	0,99990	0,00038	0,99991	0,00038	0,99991	0,00038	0,99991	0,00037
3,74	0,99991	0,00037	0,99991	0,00036	0,99991	0,00036	0,99991	0,00036	0,99991	0,00036
3,75	0,99991	0,00035	0,99991	0,00035	0,99991	0,00035	0,99991	0,00035	0,99991	0,00035
3,76	0,99992	0,00034	0,99992	0,00034	0,99992	0,00034	0,99992	0,00034	0,99992	0,00033
3,77	0,99992	0,00033	0,99992	0,00033	0,99992	0,00032	0,99992	0,00032	0,99992	0,00032
3,78	0,99992	0,00031	0,99992	0,00031	0,99992	0,00031	0,99992	0,00031	0,99992	0,00031
3,79	0,99992	0,00030	0,99992	0,00030	0,99993	0,00030	0,99993	0,00030	0,99993	0,00030
3,80	0,99993	0,00029	0,99993	0,00029	0,99993	0,00029	0,99993	0,00029	0,99993	0,00029
3,81	0,99993	0,00028	0,99993	0,00028	0,99993	0,00028	0,99993	0,00028	0,99993	0,00028
3,82	0,99993	0,00027	0,99993	0,00027	0,99993	0,00027	0,99993	0,00027	0,99993	0,00027
3,83	0,99994	0,00026	0,99994	0,00026	0,99994	0,00026	0,99994	0,00026	0,99994	0,00026
3,84	0,99994	0,00025	0,99994	0,00025	0,99994	0,00025	0,99994	0,00025	0,99994	0,00025
3,85	0,99994	0,00024	0,99994	0,00024	0,99994	0,00024	0,99994	0,00024	0,99994	0,00024
3,86	0,99994	0,00023	0,99994	0,00023	0,99994	0,00023	0,99994	0,00023	0,99994	0,00023
3,87	0,99995	0,00022	0,99995	0,00022	0,99995	0,00022	0,99995	0,00022	0,99995	0,00022
3,88	0,99995	0,00021	0,99995	0,00021	0,99995	0,00021	0,99995	0,00021	0,99995	0,00021
3,89	0,99995	0,00021	0,99995	0,00021	0,99995	0,00020	0,99995	0,00020	0,99995	0,00020
3,90	0,99995	0,00020	0,99995	0,00020	0,99995	0,00020	0,99995	0,00020	0,99995	0,00020
3,91	0,99995	0,00019	0,99995	0,00019	0,99995	0,00019	0,99995	0,00019	0,99995	0,00019
3,92	0,99996	0,00018	0,99996	0,00018	0,99996	0,00018	0,99996	0,00018	0,99996	0,00018
3,93	0,99996	0,00018	0,99996	0,00018	0,99996	0,00018	0,99996	0,00017	0,99996	0,00017
3,94	0,99996	0,00017	0,99996	0,00017	0,99996	0,00017	0,99996	0,00017	0,99996	0,00017
3,95	0,99996	0,00016	0,99996	0,00016	0,99996	0,00016	0,99996	0,00016	0,99996	0,00016
3,96	0,99996	0,00016	0,99996	0,00016	0,99996	0,00016	0,99996	0,00016	0,99996	0,00015

7	,000		,001		,002		,003		,004	
2	Luas	Ordinat								
3,97	0,99996	0,00015	0,99996	0,00015	0,99996	0,00015	0,99996	0,00015	0,99996	0,00015
3,98	0,99997	0,00014	0,99997	0,00014	0,99997	0,00014	0,99997	0,00014	0,99997	0,00014
3,99	0,99997	0,00014	0,99997	0,00014	0,99997	0,00014	0,99997	0,00014	0,99997	0,00014

lanjutan

7	,0	05	,0	06	,0	07	,0	08	,0	09
2	Luas	Ordinat								
0,00	0,50199	0,39886	0,50239	0,39885	0,50279	0,39885	0,50319	0,39885	0,50359	0,39885
0,01	0,50598	0,39882	0,50638	0,39881	0,50678	0,39880	0,50718	0,39880	0,50758	0,39879
0,02	0,50997	0,39874	0,51037	0,39873	0,51077	0,39872	0,51117	0,39871	0,51157	0,39869
0,03	0,51396	0,39862	0,51436	0,39860	0,51476	0,39859	0,51516	0,39857	0,51555	0,39856
0,04	0,51795	0,39846	0,51834	0,39844	0,51874	0,39842	0,51914	0,39840	0,51954	0,39838
0,05	0,52193	0,39826	0,52233	0,39824	0,52273	0,39821	0,52313	0,39819	0,52352	0,39817
0,06	0,52591	0,39802	0,52631	0,39799	0,52671	0,39797	0,52711	0,39794	0,52751	0,39791
0,07	0,52989	0,39774	0,53029	0,39771	0,53069	0,39768	0,53109	0,39765	0,53148	0,39762
0,08	0,53387	0,39742	0,53427	0,39739	0,53466	0,39736	0,53506	0,39732	0,53546	0,39729
0,09	0,53784	0,39707	0,53824	0,39703	0,53864	0,39699	0,53903	0,39695	0,53943	0,39691
0,10	0,54181	0,39667	0,54221	0,39663	0,54261	0,39659	0,54300	0,39654	0,54340	0,39650
0,11	0,54578	0,39623	0,54617	0,39619	0,54657	0,39614	0,54697	0,39609	0,54736	0,39605
0,12	0,54974	0,39576	0,55013	0,39571	0,55053	0,39566	0,55093	0,39561	0,55132	0,39556
0,13	0,55369	0,39524	0,55409	0,39519	0,55448	0,39514	0,55488	0,39508	0,55527	0,39503
0,14	0,55764	0,39469	0,55804	0,39463	0,55843	0,39458	0,55883	0,39452	0,55922	0,39446
0,15	0,56159	0,39410	0,56198	0,39404	0,56238	0,39398	0,56277	0,39391	0,56317	0,39385
0,16	0,56553	0,39347	0,56592	0,39340	0,56631	0,39334	0,56671	0,39327	0,56710	0,39321
0,17	0,56946	0,39280	0,56985	0,39273	0,57025	0,39266	0,57064	0,39259	0,57103	0,39252
0,18	0,57339	0,39209	0,57378	0,39202	0,57417	0,39195	0,57456	0,39188	0,57495	0,39180
0,19	0,57730	0,39135	0,57769	0,39127	0,57809	0,39120	0,57848	0,39112	0,57887	0,39104
0,20	0,58121	0,39057	0,58160	0,39049	0,58200	0,39041	0,58239	0,39033	0,58278	0,39025
0,21	0,58512	0,38975	0,58551	0,38967	0,58590	0,38958	0,58629	0,38950	0,58667	0,38941
0,22	0,58901	0,38889	0,58940	0,38880	0,58979	0,38872	0,59018	0,38863	0,59057	0,38854
0,23	0,59290	0,38800	0,59328	0,38791	0,59367	0,38782	0,59406	0,38772	0,59445	0,38763
0,24	0,59677	0,38707	0,59716	0,38697	0,59755	0,38688	0,59793	0,38678	0,59832	0,38669
0,25	0,60064	0,38610	0,60102	0,38600	0,60141	0,38590	0,60180	0,38581	0,60218	0,38571
0,26	0,60450	0,38510	0,60488	0,38500	0,60527	0,38490	0,60565	0,38479	0,60604	0,38469
0,27	0,60834	0,38406	0,60873	0,38396	0,60911	0,38385	0,60949	0,38374	0,60988	0,38364
0,28	0,61218	0,38299	0,61256	0,38288	0,61294	0,38277	0,61333	0,38266	0,61371	0,38255
0,29	0,61600	0,38188	0,61638	0,38177	0,61677	0,38165	0,61715	0,38154	0,61753	0,38143
0,30	0,61982	0,38073	0,62020	0,38062	0,62058	0,38050	0,62096	0,38038	0,62134	0,38027
0,31	0,62362	0,37956	0,62400	0,37944	0,62438	0,37932	0,62476	0,37920	0,62514	0,37908
0,32	0,62741	0,37834	0,62779	0,37822	0,62817	0,37810	0,62854	0,37797	0,62892	0,37785
0,33	0,63119	0,37710	0,63156	0,37697	0,63194	0,37684	0,63232	0,37672	0,63270	0,37659
0,34	0,63495	0,37582	0,63533	0,37569	0,63570	0,37556	0,63608	0,37543	0,63646	0,37530
0,35	0,63871	0,37450	0,63908	0,37437	0,63945	0,37424	0,63983	0,37410	0,64020	0,37397
0,36	0,64244	0,37316	0,64282	0,37302	0,64319	0,37289	0,64356	0,37275	0,64394	0,37261
0,37	0,64617	0,37178	0,64654	0,37164	0,64691	0,37150	0,64728	0,37136	0,64766	0,37122
0,38	0,64988	0,37037	0,65025	0,37023	0,65062	0,37008	0,65099	0,36994	0,65136	0,36980
0,39	0,65358	0,36893	0,65395	0,36878	0,65432	0,36864	0,65468	0,36849	0,65505	0,36834
0,40	0,65726	0,36746	0,65763	0,36731	0,65800	0,36716	0,65836	0,36701	0,65873	0,36686
0,41	0,66093	0,36595	0,66129	0,36580	0,66166	0,36565	0,66203	0,36550	0,66239	0,36534

7	,0	05	,0	06	,0	07	,0	08	,0	09
2	Luas	Ordinat								
0,42	0,66458	0,36442	0,66495	0,36426	0,66531	0,36411	0,66567	0,36395	0,66604	0,36380
0,43	0,66822	0,36285	0,66858	0,36270	0,66894	0,36254	0,66931	0,36238	0,66967	0,36222
0,44	0,67184	0,36126	0,67220	0,36110	0,67256	0,36094	0,67292	0,36078	0,67328	0,36062
0,45	0,67545	0,35964	0,67581	0,35948	0,67616	0,35931	0,67652	0,35915	0,67688	0,35898
0,46	0,67903	0,35799	0,67939	0,35782	0,67975	0,35766	0,68011	0,35749	0,68047	0,35732
0,47	0,68261	0,35631	0,68296	0,35614	0,68332	0,35597	0,68367	0,35580	0,68403	0,35563
0,48	0,68616	0,35460	0,68652	0,35443	0,68687	0,35426	0,68723	0,35409	0,68758	0,35391
0,49	0,68970	0,35287	0,69005	0,35270	0,69041	0,35252	0,69076	0,35235	0,69111	0,35217
0,50	0,69322	0,35111	0,69357	0,35093	0,69392	0,35076	0,69427	0,35058	0,69462	0,35040
0,51	0,69672	0,34933	0,69707	0,34915	0,69742	0,34896	0,69777	0,34878	0,69812	0,34860
0,52	0,70021	0,34751	0,70056	0,34733	0,70090	0,34715	0,70125	0,34696	0,70160	0,34678
0,53	0,70368	0,34568	0,70402	0,34549	0,70437	0,34531	0,70471	0,34512	0,70506	0,34493
0,54	0,70712	0,34381	0,70747	0,34363	0,70781	0,34344	0,70815	0,34325	0,70850	0,34306
0,55	0,71055	0,34193	0,71089	0,34174	0,71124	0,34155	0,71158	0,34136	0,71192	0,34117
0,56	0,71396	0,34002	0,71430	0,33983	0,71464	0,33963	0,71498	0,33944	0,71532	0,33925
0,57	0,71735	0,33809	0,71769	0,33789	0,71803	0,33770	0,71837	0,33750	0,71871	0,33731
0,58	0,72073	0,33613	0,72106	0,33593	0,72140	0,33574	0,72173	0,33554	0,72207	0,33534
0,59	0,72408	0,33415	0,72441	0,33396	0,72475	0,33376	0,72508	0,33356	0,72541	0,33336
0,60	0,72741	0,33216	0,72774	0,33195	0,72807	0,33175	0,72841	0,33155	0,72874	0,33135
0,61	0,73072	0,33014	0,73105	0,32993	0,73138	0,32973	0,73171	0,32953	0,73204	0,32932
0,62	0,73401	0,32809	0,73434	0,32789	0,73467	0,32768	0,73500	0,32748	0,73533	0,32727
0,63	0,73729	0,32603	0,73761	0,32583	0,73794	0,32562	0,73826	0,32541	0,73859	0,32520
0,64	0,74054	0,32395	0,74086	0,32375	0,74118	0,32354	0,74151	0,32333	0,74183	0,32312
0,65	0,74377	0,32186	0,74409	0,32164	0,74441	0,32143	0,74473	0,32122	0,74505	0,32101
0,66	0,74697	0,31974	0,74729	0,31953	0,74761	0,31931	0,74793	0,31910	0,74825	0,31889
0,67	0,75016	0,31760	0,75048	0,31739	0,75080	0,31717	0,75111	0,31696	0,75143	0,31674
0,68	0,75333	0,31545	0,75364	0,31523	0,75396	0,31502	0,75427	0,31480	0,75459	0,31459
0,69	0,75647	0,31328	0,75679	0,31306	0,75710	0,31285	0,75741	0,31263	0,75772	0,31241
0,70	0,75959	0,31110	0,75991	0,31088	0,76022	0,31066	0,76053	0,31044	0,76084	0,31022
0,71	0,76270	0,30890	0,76300	0,30867	0,76331	0,30845	0,76362	0,30823	0,76393	0,30801
0,72	0,76577	0,30668	0,76608	0,30646	0,76639	0,30623	0,76669	0,30601	0,76700	0,30579
0,73	0,76883	0,30445	0,76913	0,30422	0,76944	0,30400	0,76974	0,30378	0,77005	0,30355
0,74	0,77186	0,30220	0,77217	0,30198	0,77247	0,30175	0,77277	0,30153	0,77307	0,30130
0,75	0,77488	0,29995	0,77518	0,29972	0,77548	0,29949	0,77577	0,29927	0,77607	0,29904
0,76	0,77786	0,29768	0,77816	0,29745	0,77846	0,29722	0,77876	0,29699	0,77905	0,29676
0,77	0,78083	0,29539	0,78113	0,29516	0,78142	0,29493	0,78172	0,29470	0,78201	0,29448
0,78	0,78377	0,29310	0,78407	0,29287	0,78436	0,29264	0,78465	0,29241	0,78494	0,29218
0,79	0,78669	0,29079	0,78698	0,29056	0,78727	0,29033	0,78756	0,29010	0,78785	0,28986
0,80	0,78959	0,28847	0,78988	0,28824	0,79017	0,28801	0,79045	0,28778	0,79074	0,28754
0,81	0,79246	0,28615	0,79275	0,28591	0,79304	0,28568	0,79332	0,28545	0,79361	0,28521
0,82	0,79531	0,28381	0,79560	0,28358	0,79588	0,28334	0,79616	0,28311	0,79645	0,28287
0,83	0,79814	0,28146	0,79842	0,28123	0,79870	0,28099	0,79898	0,28076	0,79927	0,28052
0,84	0,80094	0,27911	0,80122	0,27887	0,80150	0,27864	0,80178	0,27840	0,80206	0,27817
0,85	0,80372	0,27675	0,80400	0,27651	0,80428	0,27627	0,80455	0,27604	0,80483	0,27580
0,86	0,80648	0,27438	0,80675	0,27414	0,80703	0,27390	0,80730	0,27366	0,80758	0,27343
0,87	0,80921	0,27200	0,80948	0,27176	0,80976	0,27152	0,81003	0,27129	0,81030	0,27105
0,88	0,81192	0,26962	0,81219	0,26938	0,81246	0,26914	0,81273	0,26890	0,81300	0,26866
0,89	0,81461	0,26723	0,81487	0,26699	0,81514	0,26675	0,81541	0,26651	0,81567	0,26627
0,90	0,81727	0,26483	0,81753	0,26459	0,81780	0,26435	0,81806	0,26411	0,81832	0,26387
0,91	0,81990	0,26243	0,82017	0,26219	0,82043	0,26195	0,82069	0,26171	0,82095	0,26147

-	0,	05	0,	06	0,	07	0,	08	0,	09
2	Luas	Ordinat								
0,92	0,82252	0,26003	0,82278	0,25979	0,82304	0,25955	0,82330	0,25931	0,82356	0,25907
0,93	0,82511	0,25762	0,82536	0,25738	0,82562	0,25714	0,82588	0,25690	0,82613	0,25666
0,94	0,82767	0,25521	0,82793	0,25497	0,82818	0,25473	0,82844	0,25449	0,82869	0,25425
0,95	0,83021	0,25280	0,83046	0,25256	0,83072	0,25232	0,83097	0,25208	0,83122	0,25184
0,96	0.83273	0.25039	0.83298	0.25014	0.83323	0,24990	0.83348	0.24966	0.83373	0.24942
0,97	0,83522	0,24797	0,83547	0,24773	0,83572	0,24749	0,83596	0,24724	0,83621	0,24700
0,98	0,83769	0,24555	0,83793	0,24531	0,83818	0,24507	0,83842	0,24482	0,83867	0,24458
0,99	0,84013	0,24313	0,84037	0,24289	0,84062	0,24265	0,84086	0,24241	0,84110	0,24216
1,00	0,84255	0,24071	0,84279	0,24047	0,84303	0,24023	0,84327	0,23999	0,84351	0,23974
1,01	0,84495	0,23829	0,84519	0,23805	0,84542	0,23781	0,84566	0,23757	0,84590	0,23733
1,02	0,84732	0,23588	0,84755	0,23563	0,84779	0,23539	0,84803	0,23515	0,84826	0,23491
1,03	0,84967	0,23346	0,84990	0,23322	0,85013	0,23297	0,85036	0,23273	0,85060	0,23249
1,04	0,85199	0,23104	0,85222	0,23080	0,85245	0,23056	0,85268	0,23032	0,85291	0,23008
1,05	0,85429	0,22863	0,85452	0,22839	0,85474	0,22815	0,85497	0,22791	0,85520	0,22766
1,06	0,85656	0,22622	0,85679	0,22598	0,85701	0,22574	0,85724	0,22550	0,85747	0,22526
1,07	0,85881	0,22381	0,85904	0,22357	0,85926	0,22333	0,85948	0,22309	0,85971	0,22285
1,08	0,86104	0,22141	0,86126	0,22117	0,86148	0,22093	0,86170	0,22069	0,86192	0,22045
1,09	0,86324	0,21901	0,86346	0,21877	0,86368	0,21853	0,86390	0,21829	0,86412	0,21805
1,10	0,86542	0,21661	0,86564	0,21637	0,86585	0,21613	0,86607	0,21589	0,86628	0,21565
1,11	0,86757	0,21422	0,86779	0,21398	0,86800	0,21374	0,86822	0,21350	0,86843	0,21326
1,12	0,86971	0.21183	0.86992	0.21160	0.87013	0.21136	0.87034	0,21112	0.87055	0.21088
1,13	0,87181	0,20945	0,87202	0,20922	0,87223	0,20898	0,87244	0,20874	0,87265	0,20850
1,14	0,87390	0.20708	0,87410	0.20684	0.87431	0.20661	0.87452	0.20637	0.87472	0.20613
1,15	0,87595	0,20471	0,87616	0,20448	0,87636	0,20424	0,87657	0,20400	0,87677	0,20377
1,16	0,87799	0,20235	0,87819	0,20212	0,87839	0,20188	0,87860	0,20164	0,87880	0,20141
1,17	0,88000	0,20000	0,88020	0,19976	0,88040	0,19953	0,88060	0,19929	0,88080	0,19906
1,18	0,88199	0,19765	0,88219	0,19742	0,88239	0,19718	0,88258	0,19695	0,88278	0,19671
1,19	0,88396	0,19531	0,88415	0,19508	0,88435	0,19485	0,88454	0,19461	0,88474	0,19438
1,20	0,88590	0,19298	0,88609	0,19275	0,88628	0,19252	0,88648	0,19229	0,88667	0,19205
1,21	0,88782	0,19066	0,88801	0,19043	0,88820	0,19020	0,88839	0,18997	0,88858	0,18974
1,22	0,88971	0,18835	0,88990	0,18812	0,89009	0,18789	0,89028	0,18766	0,89046	0,18743
1,23	0,89158	0,18605	0,89177	0,18582	0,89196	0,18559	0,89214	0,18536	0,89233	0,18513
1,24	0,89343	0,18375	0,89362	0,18353	0,89380	0,18330	0,89398	0,18307	0,89417	0,18284
1,25	0,89526	0,18147	0,89544	0,18124	0,89562	0,18102	0,89580	0,18079	0,89598	0,18056
1,26	0,89706	0,17920	0,89724	0,17897	0,89742	0,17875	0,89760	0,17852	0,89778	0,17829
1,27	0,89885	0,17694	0,89902	0,17671	0,89920	0,17649	0,89938	0,17626	0,89955	0,17604
1,28	0,90060	0,17469	0,90078	0,17446	0,90095	0,17424	0,90113	0,17402	0,90130	0,17379
1,29	0,90234	0,17245	0,90251	0,17223	0,90268	0,17200	0,90286	0,17178	0,90303	0,17156
1,30	0,90405	0,17022	0,90422	0,17000	0,90439	0,16978	0,90456	0,16956	0,90473	0,16933
1,31	0,90575	0,16801	0,90591	0,16779	0,90608	0,16756	0,90625	0,16734	0,90642	0,16712
1,32	0,90741	0,16580	0,90758	0,16558	0,90775	0,16536	0,90791	0,16514	0,90808	0,16493
1,33	0,90906	0,16361	0,90923	0,16339	0,90939	0,16318	0,90955	0,16296	0,90971	0,16274
1,34	0,91069	0,16144	0,91085	0,16122	0,91101	0,16100	0,91117	0,16078	0,91133	0,16057
1,35	0,91229	0,15927	0,91245	0,15905	0,91261	0,15884	0,91277	0,15862	0,91293	0,15841
1,36	0,91387	0,15712	0,91403	0,15690	0,91419	0,15669	0,91434	0,15648	0,91450	0,15626
1,37	0,91543	0,15498	0,91559	0,15477	0,91574	0,15456	0,91590	0,15434	0,91605	0,15413
1,38	0,91697	0,15286	0,91713	0,15265	0,91728	0,15243	0,91743	0,15222	0,91758	0,15201
1,39	0,91849	0,15075	0,91864	0,15054	0,91879	0,15033	0,91894	0,15012	0,91909	0,14991
1,40	0,91999	0,14865	0,92014	0,14844	0,92029	0,14823	0,92043	0,14803	0,92058	0,14782
1,41	0,92147	0,14657	0,92161	0,14636	0,92176	0,14616	0,92190	0,14595	0,92205	0,14574

7	,00	05	,0	06	,0	07	,0	08	,0	09
2	Luas	Ordinat								
1,42	0,92292	0,14450	0,92307	0,14430	0,92321	0,14409	0,92335	0,14389	0,92350	0,14368
1,43	0,92436	0,14245	0,92450	0,14225	0,92464	0,14204	0,92478	0,14184	0,92492	0,14164
1,44	0,92577	0,14042	0,92591	0,14021	0,92605	0,14001	0,92619	0,13981	0,92633	0,13960
1,45	0,92717	0,13839	0,92730	0,13819	0,92744	0,13799	0,92758	0,13779	0,92772	0,13759
1,46	0,92854	0,13639	0,92868	0,13619	0,92881	0,13599	0,92895	0,13579	0,92908	0,13559
1,47	0,92989	0,13440	0,93003	0,13420	0,93016	0,13400	0,93030	0,13380	0,93043	0,13361
1,48	0,93123	0,13242	0,93136	0,13223	0,93149	0,13203	0,93162	0,13183	0,93176	0,13164
1,49	0,93254	0,13046	0,93267	0,13027	0,93280	0,13007	0,93293	0,12988	0,93306	0,12969
1,50	0,93384	0,12852	0,93397	0,12833	0,93409	0,12814	0,93422	0,12794	0,93435	0,12775
1,51	0,93511	0,12660	0,93524	0,12640	0,93537	0,12621	0,93549	0,12602	0,93562	0,12583
1,52	0,93637	0,12469	0,93650	0,12450	0,93662	0,12431	0,93674	0,12412	0,93687	0,12393
1,53	0,93761	0,12279	0,93773	0,12260	0,93785	0,12242	0,93798	0,12223	0,93810	0,12204
1,54	0,93883	0,12092	0,93895	0,12073	0,93907	0,12054	0,93919	0,12036	0,93931	0,12017
1,55	0,94003	0,11906	0,94015	0,11887	0,94026	0,11869	0,94038	0,11850	0,94050	0,11832
1,56	0,94121	0,11721	0,94133	0,11703	0,94144	0,11685	0,94156	0,11666	0,94168	0,11648
1,57	0,94237	0,11539	0,94249	0,11521	0,94260	0,11503	0,94272	0,11484	0,94283	0,11466
1,58	0,94352	0,11358	0,94363	0,11340	0,94374	0,11322	0,94386	0,11304	0,94397	0,11286
1,59	0,94464	0,11179	0,94476	0,11161	0,94487	0,11143	0,94498	0,11125	0,94509	0,11108
1,60	0,94575	0,11001	0,94586	0,10984	0,94597	0,10966	0,94608	0,10948	0,94619	0,10931
1,61	0,94684	0,10826	0,94695	0,10808	0,94706	0,10791	0,94717	0,10773	0,94728	0,10756
1,62	0,94792	0,10652	0,94803	0,10634	0,94813	0,10617	0,94824	0,10600	0,94834	0,10583
1,63	0,94898	0,10479	0,94908	0,10462	0,94918	0,10445	0,94929	0,10428	0,94939	0,10411
1,64	0,95002	0,10309	0,95012	0,10292	0,95022	0,10275	0,95032	0,10258	0,95043	0,10241
1,65	0,95104	0,10140	0,95114	0,10124	0,95124	0,10107	0,95134	0,10090	0,95144	0,10073
1,66	0,95204	0,09973	0,95214	0,09957	0,95224	0,09940	0,95234	0,09924	0,95244	0,09907
1,67	0,95303	0,09808	0,95313	0,09792	0,95323	0,09775	0,95333	0,09759	0,95342	0,09743
1,68	0,95401	0,09645	0,95410	0,09629	0,95420	0,09612	0,95429	0,09596	0,95439	0,09580
1,69	0,95496	0,09483	0,95506	0,09467	0,95515	0,09451	0,95525	0,09435	0,95534	0,09419
1,70	0,95590	0,09323	0,95600	0,09307	0,95609	0,09292	0,95618	0,09276	0,95627	0,09260
1,71	0,95683	0,09165	0,95692	0,09150	0,95701	0,09134	0,95710	0,09118	0,95719	0,09103
1,72	0,95774	0,09009	0,95783	0,08993	0,95792	0,08978	0,95801	0,08962	0,95810	0,08947
1,73	0,95863	0,08854	0,95872	0,08839	0,95881	0,08824	0,95889	0,08808	0,95898	0,08793
1,74	0,95951	0,08702	0,95959	0,08687	0,95968	0,08671	0,95977	0,08656	0,95985	0,08641
1,75	0,96037	0,08551	0,96046	0,08536	0,96054	0,08521	0,96063	0,08506	0,96071	0,08491
1,76	0,96122	0,08402	0,96130	0,08387	0,96139	0,08372	0,96147	0,08357	0,96155	0,08342
1,77	0,96205	0,08254	0,96213	0,08240	0,96222	0,08225	0,96230	0,08210	0,96238	0,08196
1,78	0,96287	0,08109	0,96295	0,08094	0,96303	0,08080	0,96311	0,08065	0,96319	0,08051
1,79	0,96367	0,07965	0,96375	0,07950	0,96383	0,07936	0,96391	0,07922	0,96399	0,07908
1,80	0,96446	0,07823	0,96454	0,07808	0,96462	0,07794	0,96470	0,07780	0,96477	0,07766
1,81	0,96524	0,07682	0,96531	0,07668	0,96539	0,07654	0,96547	0,07641	0,96554	0,07627
1,82	0,96600	0,07544	0,96607	0,07530	0,96615	0,07516	0,96623	0,07503	0,96630	0,07489
1,83	0,96675	0,07407	0,96682	0,07393	0,96690	0,07380	0,96697	0,07366	0,96704	0,07353
1,84	0,96748	0,07272	0,96755	0,07258	0,96763	0,07245	0,96770	0,07232	0,96777	0,07218
1,85	0,96820	0,07139	0,96827	0,07125	0,96834	0,07112	0,96842	0,07099	0,96849	0,07086
1,86	0,96891	0,07007	0,96898	0,06994	0,96905	0,06981	0,96912	0,06968	0,96919	0,06955
1,87	0,96960	0,06877	0,96967	0,06864	0,96974	0,06851	0,96981	0,06839	0,96988	0,06826
1,88	0,97029	0,06749	0,97035	0,06736	0,97042	0,06724	0,97049	0,06711	0,97055	0,06698
1,89	0,97095	0,06623	0,97102	0,06610	0,97109	0,06598	0,97115	0,06585	0,97122	0,06573
1,90	0,97161	0,06498	0,97167	0,06486	0,97174	0,06473	0,97180	0,06461	0,97187	0,06449
1,91	0,97225	0,06375	0,97232	0,06363	0,97238	0,06351	0,97244	0,06339	0,97251	0,06327

_	.0	05	.0	06	.0	07	.0	08	.0	09
Z	Luas	Ordinat								
1,92	0,97289	0,06254	0,97295	0,06242	0,97301	0,06230	0,97307	0,06218	0,97313	0,06206
1,93	0,97350	0,06134	0,97357	0,06123	0,97363	0,06111	0,97369	0,06099	0,97375	0,06087
1,94	0,97411	0,06017	0,97417	0,06005	0,97423	0,05993	0,97429	0,05982	0,97435	0,05970
1,95	0,97471	0,05900	0,97477	0,05889	0,97483	0,05877	0,97488	0,05866	0,97494	0,05854
1,96	0,97529	0,05786	0,97535	0,05775	0,97541	0,05763	0,97547	0,05752	0,97552	0,05741
1,97	0,97587	0,05673	0,97592	0,05662	0,97598	0,05651	0,97604	0,05639	0,97609	0,05628
1,98	0,97643	0,05562	0,97648	0,05551	0,97654	0,05540	0,97659	0,05529	0,97665	0,05518
1,99	0,97698	0,05452	0,97703	0,05441	0,97709	0,05430	0,97714	0,05420	0,97720	0,05409
2,00	0,97752	0,05344	0,97757	0,05334	0,97763	0,05323	0,97768	0,05312	0,97773	0,05302
2,01	0,97805	0,05238	0,97810	0,05227	0,97815	0,05217	0,97820	0,05206	0,97826	0,05196
2,02	0,97857	0,05133	0,97862	0,05123	0,97867	0,05112	0,97872	0,05102	0,97877	0,05092
2,03	0,97907	0,05030	0,97912	0,05020	0,97917	0,05010	0,97923	0,04999	0,97927	0,04989
2,04	0,97957	0,04928	0,97962	0,04918	0,97967	0,04908	0,97972	0,04898	0,97977	0,04888
2,05	0,98006	0.04828	0,98011	0.04818	0,98016	0.04809	0,98020	0,04799	0,98025	0.04789
2,06	0,98054	0,04730	0,98059	0,04720	0,98063	0,04710	0,98068	0,04701	0,98073	0,04691
2,07	0,98101	0,04633	0,98105	0,04623	0,98110	0,04614	0,98115	0,04604	0,98119	0,04595
2,08	0,98147	0.04538	0,98151	0.04528	0,98156	0.04519	0,98160	0,04509	0,98165	0,04500
2,09	0,98191	0,04444	0,98196	0,04435	0,98200	0.04425	0,98205	0,04416	0,98209	0,04407
2,10	0,98235	0.04351	0,98240	0,04342	0,98244	0.04333	0,98248	0,04324	0,98253	0,04315
2,11	0,98279	0.04261	0,98283	0,04252	0,98287	0.04243	0,98291	0,04234	0,98295	0,04225
2.12	0.98321	0.04171	0.98325	0.04162	0.98329	0.04154	0.98333	0.04145	0.98337	0.04136
2,13	0,98362	0.04083	0,98366	0.04075	0,98370	0.04066	0,98374	0.04057	0,98378	0.04049
2.14	0.98402	0.03997	0.98406	0.03988	0.98410	0.03980	0.98414	0.03971	0.98418	0.03963
2,15	0,98442	0.03912	0,98446	0.03903	0,98450	0.03895	0,98454	0.03887	0,98457	0.03878
2,16	0,98481	0,03828	0,98484	0,03820	0,98488	0,03812	0,98492	0,03803	0,98496	0,03795
2,17	0,98518	0.03746	0,98522	0.03738	0,98526	0.03730	0,98530	0,03722	0,98533	0,03714
2,18	0,98556	0,03665	0,98559	0,03657	0,98563	0,03649	0,98567	0,03641	0,98570	0,03633
2,19	0,98592	0,03586	0,98595	0,03578	0,98599	0,03570	0,98603	0,03562	0,98606	0,03555
2,20	0,98627	0,03508	0,98631	0,03500	0,98634	0,03492	0,98638	0,03485	0,98641	0,03477
2,21	0,98662	0.03431	0,98665	0.03424	0,98669	0.03416	0,98672	0,03408	0,98676	0.03401
2,22	0,98696	0,03356	0,98699	0,03348	0,98703	0,03341	0,98706	0,03334	0,98709	0,03326
2,23	0,98729	0,03282	0,98732	0,03275	0,98736	0,03267	0,98739	0,03260	0,98742	0,03253
2,24	0,98762	0,03209	0,98765	0,03202	0,98768	0,03195	0,98771	0,03188	0,98774	0,03180
2,25	0,98793	0,03138	0,98796	0,03131	0,98800	0,03124	0,98803	0,03117	0,98806	0,03110
2,26	0,98824	0,03068	0,98827	0,03061	0,98830	0,03054	0,98834	0,03047	0,98837	0,03040
2,27	0,98855	0,02999	0,98858	0,02992	0,98861	0,02985	0,98864	0,02978	0,98867	0,02972
2,28	0,98884	0,02931	0,98887	0,02925	0,98890	0,02918	0,98893	0,02911	0,98896	0,02905
2,29	0,98913	0,02865	0,98916	0,02858	0,98919	0,02852	0,98922	0,02845	0,98925	0,02839
2,30	0,98942	0,02800	0,98944	0,02793	0,98947	0,02787	0,98950	0,02780	0,98953	0,02774
2,31	0,98969	0,02736	0,98972	0,02729	0,98975	0,02723	0,98978	0,02717	0,98980	0,02711
2,32	0,98996	0,02673	0,98999	0,02667	0,99002	0,02661	0,99004	0,02654	0,99007	0,02648
2,33	0,99023	0,02611	0,99025	0,02605	0,99028	0,02599	0,99031	0,02593	0,99033	0,02587
2,34	0,99049	0,02551	0,99051	0,02545	0,99054	0,02539	0,99056	0,02533	0,99059	0,02527
2,35	0,99074	0,02492	0,99076	0,02486	0,99079	0,02480	0,99081	0,02474	0,99084	0,02468
2,36	0,99098	0,02434	0,99101	0,02428	0,99103	0,02422	0,99106	0,02416	0,99108	0,02411
2,37	0,99123	0,02377	0,99125	0,02371	0,99127	0,02365	0,99130	0,02360	0,99132	0,02354
2,38	0,99146	0,02321	0,99148	0,02315	0,99151	0,02310	0,99153	0,02304	0,99155	0,02299
2,39	0,99169	0,02266	0,99171	0,02261	0,99174	0,02255	0,99176	0,02250	0,99178	0,02244
2,40	0,99191	0,02212	0,99194	0,02207	0,99196	0,02202	0,99198	0,02196	0,99200	0,02191
2,41	0.99213	0.02160	0,99215	0.02154	0,99218	0.02149	0.99220	0,02144	0,99222	0.02139

7	,0	05	,0	06	,0	07	,0	08	,0	09
2	Luas	Ordinat								
2,42	0,99235	0,02108	0,99237	0,02103	0,99239	0,02098	0,99241	0,02093	0,99243	0,02088
2,43	0,99255	0,02057	0,99257	0,02052	0,99260	0,02047	0,99262	0,02042	0,99264	0,02037
2,44	0,99276	0,02008	0,99278	0,02003	0,99280	0,01998	0,99282	0,01993	0,99284	0,01988
2,45	0,99296	0,01959	0,99298	0,01954	0,99299	0,01950	0,99301	0,01945	0,99303	0,01940
2,46	0,99315	0,01912	0,99317	0,01907	0,99319	0,01902	0,99321	0,01897	0,99323	0,01893
2,47	0,99334	0,01865	0,99336	0,01860	0,99338	0,01856	0,99339	0,01851	0,99341	0,01847
2,48	0,99352	0,01819	0,99354	0,01815	0,99356	0,01810	0,99358	0,01806	0,99359	0,01801
2,49	0,99370	0,01774	0,99372	0,01770	0,99374	0,01766	0,99376	0,01761	0,99377	0,01757
2,50	0,99388	0,01731	0,99389	0,01726	0,99391	0,01722	0,99393	0,01718	0,99395	0,01713
2,51	0,99405	0,01688	0,99407	0,01684	0,99408	0,01679	0,99410	0,01675	0,99412	0,01671
2,52	0,99422	0,01646	0,99423	0,01642	0,99425	0,01637	0,99426	0,01633	0,99428	0,01629
2,53	0,99438	0,01605	0,99439	0,01601	0,99441	0,01597	0,99443	0,01593	0,99444	0,01588
2,54	0,99454	0,01564	0,99455	0,01560	0,99457	0,01556	0,99458	0,01553	0,99460	0,01549
2,55	0,99469	0,01525	0,99471	0,01521	0,99472	0,01517	0,99474	0,01513	0,99475	0,01510
2,56	0,99484	0,01486	0,99486	0,01483	0,99487	0,01479	0,99489	0,01475	0,99490	0,01471
2,57	0,99499	0,01449	0,99500	0,01445	0,99502	0,01441	0,99503	0,01438	0,99505	0,01434
2,58	0,99513	0,01412	0,99515	0,01408	0,99516	0,01405	0,99517	0,01401	0,99519	0,01397
2,59	0,99527	0,01376	0,99528	0,01372	0,99530	0,01369	0,99531	0,01365	0,99533	0,01362
2,60	0,99541	0,01340	0,99542	0,01337	0,99543	0,01333	0,99545	0,01330	0,99546	0,01327
2,61	0,99554	0,01306	0,99555	0,01303	0,99556	0,01299	0,99558	0,01296	0,99559	0,01292
2,62	0,99567	0,01272	0,99568	0,01269	0,99569	0,01265	0,99571	0,01262	0,99572	0,01259
2,63	0,99579	0,01239	0,99581	0,01236	0,99582	0,01233	0,99583	0,01229	0,99584	0,01226
2,64	0,99592	0,01207	0,99593	0,01204	0,99594	0,01200	0,99595	0,01197	0,99596	0,01194
2,65	0,99603	0,01175	0,99605	0,01172	0,99606	0,01169	0,99607	0,01166	0,99608	0,01163
2,66	0,99615	0,01144	0,99616	0,01141	0,99617	0,01138	0,99618	0,01135	0,99620	0,01132
2,67	0,99626	0,01114	0,99627	0,01111	0,99629	0,01108	0,99630	0,01105	0,99631	0,01102
2,68	0,99637	0,01085	0,99638	0,01082	0,99640	0,01079	0,99641	0,01076	0,99642	0,01073
2,69	0,99648	0,01056	0,99649	0,01053	0,99650	0,01050	0,99651	0,01048	0,99652	0,01045
2,70	0,99658	0,01028	0,99660	0,01025	0,99661	0,01022	0,99662	0,01020	0,99663	0,01017
2,71	0,99669	0,01000	0,99670	0,00998	0,99671	0,00995	0,99672	0,00992	0,99673	0,00990
2,72	0,99678	0,00974	0,99679	0,00971	0,99680	0,00968	0,99681	0,00966	0,99682	0,00963
2,73	0,99688	0,00947	0,99689	0,00945	0,99690	0,00942	0,99691	0,00940	0,99692	0,00937
2,74	0,99697	0,00922	0,99698	0,00919	0,99699	0,00917	0,99700	0,00914	0,99701	0,00912
2,75	0,99707	0,00897	0,99707	0,00894	0,99708	0,00892	0,99709	0,00889	0,99710	0,00887
2,76	0,99715	0,00872	0,99716	0,00870	0,99717	0,00868	0,99718	0,00865	0,99719	0,00863
2,77	0,99724	0,00849	0,99725	0,00846	0,99726	0,00844	0,99727	0,00841	0,99727	0,00839
2,78	0,99732	0,00825	0,99733	0,00823	0,99734	0,00821	0,99735	0,00818	0,99736	0,00816
2,79	0,99741	0,00803	0,99741	0,00800	0,99742	0,00798	0,99743	0,00796	0,99744	0,00794
2,80	0,99748	0,00780	0,99749	0,00778	0,99750	0,00776	0,99751	0,00774	0,99752	0,00772
2,81	0,99756	0,00759	0,99757	0,00757	0,99758	0,00754	0,99758	0,00752	0,99759	0,00750
2,82	0,99764	0,00738	0,99764	0,00736	0,99765	0,00733	0,99766	0,00731	0,99767	0,00729
2,83	0,99771	0,00717	0,99772	0,00715	0,99772	0,00713	0,99773	0,00711	0,99774	0,00709
2,84	0,99778	0,00697	0,99779	0,00695	0,99779	0,00693	0,99780	0,00691	0,99781	0,00689
2,85	0,99785	0,00677	0,99785	0,00675	0,99786	0,00674	0,99787	0,00672	0,99788	0,00670
2,86	0,99791	0,00658	0,99792	0,00656	0,99793	0,00655	0,99793	0,00653	0,99794	0,00651
2,87	0,99798	0,00640	0,99799	0,00638	0,99799	0,00636	0,99800	0,00634	0,99801	0,00632
2,88	0,99804	0,00622	0,99805	0,00620	0,99806	0,00618	0,99806	0,00616	0,99807	0,00614
2,89	0,99810	0,00604	0,99811	0,00602	0,99812	0,00600	0,99812	0,00599	0,99813	0,00597
2,90	0,99816	0,00587	0,99817	0,00585	0,99818	0,00583	0,99818	0,00581	0,99819	0,00580
2,91	0,99822	0,00570	0,99823	0,00568	0,99823	0,00566	0,99824	0,00565	0,99824	0,00563

7	,0	05	,0	06	,0	07	,0	08	,0	09
2	Luas	Ordinat								
2,92	0,99828	0,00553	0,99828	0,00552	0,99829	0,00550	0,99829	0,00549	0,99830	0,00547
2,93	0,99833	0,00537	0,99834	0,00536	0,99834	0,00534	0,99835	0,00533	0,99835	0,00531
2,94	0,99839	0,00522	0,99839	0,00520	0,99840	0,00519	0,99840	0,00517	0,99841	0,00516
2,95	0,99844	0,00507	0,99844	0,00505	0,99845	0,00504	0,99845	0,00502	0,99846	0,00501
2,96	0,99849	0,00492	0,99849	0,00490	0,99850	0,00489	0,99850	0,00487	0,99851	0,00486
2,97	0,99854	0,00477	0,99854	0,00476	0,99854	0,00475	0,99855	0,00473	0,99855	0,00472
2,98	0,99858	0,00463	0,99859	0,00462	0,99859	0,00461	0,99860	0,00459	0,99860	0,00458
2,99	0,99863	0,00450	0,99863	0,00448	0,99864	0,00447	0,99864	0,00446	0,99865	0,00444
3,00	0,99867	0,00436	0,99868	0,00435	0,99868	0,00434	0,99869	0,00433	0,99869	0,00431
3,01	0,99872	0,00424	0,99872	0,00422	0,99872	0,00421	0,99873	0,00420	0,99873	0,00418
3,02	0,99876	0,00411	0,99876	0,00410	0,99877	0,00408	0,99877	0,00407	0,99877	0,00406
3,03	0,99880	0,00399	0,99880	0,00397	0,99881	0,00396	0,99881	0,00395	0,99881	0,00394
3,04	0,99884	0,00387	0,99884	0,00386	0,99884	0,00384	0,99885	0,00383	0,99885	0,00382
3,05	0,99887	0,00375	0,99888	0,00374	0,99888	0,00373	0,99889	0,00372	0,99889	0,00371
3,06	0,99891	0,00364	0,99892	0,00363	0,99892	0,00362	0,99892	0,00360	0,99893	0,00359
3,07	0,99895	0,00353	0,99895	0,00352	0,99895	0,00351	0,99896	0,00350	0,99896	0,00349
3,08	0,99898	0,00342	0,99899	0,00341	0,99899	0,00340	0,99899	0,00339	0,99900	0,00338
3,09	0,99902	0,00332	0,99902	0,00331	0,99902	0,00330	0,99903	0,00329	0,99903	0,00328
3,10	0,99905	0,00322	0,99905	0,00321	0,99906	0,00320	0,99906	0,00319	0,99906	0,00318
3,11	0,99908	0,00312	0,99908	0,00311	0,99909	0,00310	0,99909	0,00309	0,99909	0,00308
3,12	0,99911	0.00302	0,99911	0.00301	0,99912	0.00300	0,99912	0.00299	0,99912	0.00298
3,13	0,99914	0,00293	0,99914	0,00292	0,99915	0,00291	0,99915	0,00290	0,99915	0,00289
3,14	0,99917	0.00284	0,99917	0.00283	0,99918	0.00282	0,99918	0,00281	0,99918	0.00280
3,15	0,99920	0,00275	0,99920	0,00274	0,99920	0,00273	0,99921	0,00272	0,99921	0,00272
3,16	0,99922	0,00266	0,99923	0,00266	0,99923	0,00265	0,99923	0,00264	0,99924	0,00263
3,17	0,99925	0,00258	0,99925	0,00257	0,99926	0,00256	0,99926	0,00256	0,99926	0,00255
3,18	0,99928	0,00250	0,99928	0,00249	0,99928	0,00248	0,99928	0,00248	0,99929	0,00247
3,19	0,99930	0,00242	0,99930	0,00241	0,99931	0,00241	0,99931	0,00240	0,99931	0,00239
3,20	0,99932	0,00235	0,99933	0,00234	0,99933	0,00233	0,99933	0,00232	0,99933	0,00232
3,21	0,99935	0,00227	0,99935	0,00226	0,99935	0,00226	0,99935	0,00225	0,99936	0,00224
3,22	0,99937	0,00220	0,99937	0,00219	0,99937	0,00219	0,99938	0,00218	0,99938	0,00217
3,23	0,99939	0,00213	0,99939	0,00212	0,99940	0,00212	0,99940	0,00211	0,99940	0,00210
3,24	0,99941	0,00206	0,99941	0,00206	0,99942	0,00205	0,99942	0,00204	0,99942	0,00204
3,25	0,99943	0,00200	0,99944	0,00199	0,99944	0,00198	0,99944	0,00198	0,99944	0,00197
3,26	0,99945	0,00193	0,99945	0,00193	0,99946	0,00192	0,99946	0,00191	0,99946	0,00191
3,27	0,99947	0,00187	0,99947	0,00186	0,99948	0,00186	0,99948	0,00185	0,99948	0,00185
3,28	0,99949	0,00181	0,99949	0,00180	0,99949	0,00180	0,99950	0,00179	0,99950	0,00179
3,29	0,99951	0,00175	0,99951	0,00175	0,99951	0,00174	0,99951	0,00173	0,99951	0,00173
3,30	0,99953	0,00169	0,99953	0,00169	0,99953	0,00168	0,99953	0,00168	0,99953	0,00167
3,31	0,99954	0,00164	0,99954	0,00163	0,99955	0,00163	0,99955	0,00162	0,99955	0,00162
3,32	0,99956	0,00159	0,99956	0,00158	0,99956	0,00157	0,99956	0,00157	0,99956	0,00156
3,33	0,99957	0,00153	0,99958	0,00153	0,99958	0,00152	0,99958	0,00152	0,99958	0,00151
3,34	0,99959	0,00148	0,99959	0,00148	0,99959	0,00147	0,99959	0,00147	0,99959	0,00146
3,35	0,99960	0,00143	0,99960	0,00143	0,99961	0,00142	0,99961	0,00142	0,99961	0,00142
3,36	0,99962	0,00139	0,99962	0,00138	0,99962	0,00138	0,99962	0,00137	0,99962	0,00137
3,37	0,99963	0,00134	0,99963	0,00134	0,99963	0,00133	0,99963	0,00133	0,99964	0,00132
3,38	0,99964	0,00130	0,99965	0,00129	0,99965	0,00129	0,99965	0,00128	0,99965	0,00128
3,39	0,99966	0,00125	0,99966	0,00125	0,99966	0,00124	0,99966	0,00124	0,99966	0,00124
3,40	0,99967	0,00121	0,99967	0,00121	0,99967	0,00120	0,99967	0,00120	0,99967	0,00119
3,41	0,99968	0.00117	0,99968	0,00117	0,99968	0,00116	0,99968	0,00116	0,99969	0.00115

-	0,	05	0,	06	0,	07	0,	08	0,	09
2	Luas	Ordinat								
3,42	0,99969	0,00113	0,99969	0,00113	0,99969	0,00112	0,99970	0,00112	0,99970	0,00112
3,43	0,99970	0,00109	0,99970	0.00109	0,99971	0,00109	0,99971	0.00108	0,99971	0,00108
3,44	0,99971	0,00106	0,99972	0,00105	0,99972	0,00105	0,99972	0.00105	0.99972	0,00104
3,45	0,99972	0,00102	0,99973	0,00102	0,99973	0,00101	0,99973	0,00101	0,99973	0,00101
3.46	0.99973	0.00099	0.99974	0.00098	0.99974	0.00098	0.99974	0.00098	0.99974	0.00097
3,47	0,99974	0.00095	0.99975	0.00095	0,99975	0.00095	0,99975	0,00094	0.99975	0,00094
3.48	0.99975	0.00092	0.99975	0.00092	0.99976	0.00091	0.99976	0.00091	0.99976	0.00091
3.49	0.99976	0.00089	0.99976	0.00088	0.99976	0.00088	0.99977	0.00088	0.99977	0.00088
3.50	0.99977	0.00086	0.99977	0.00085	0.99977	0.00085	0.99977	0.00085	0.99978	0.00085
3.51	0.99978	0.00083	0.99978	0.00082	0.99978	0.00082	0.99978	0.00082	0.99978	0.00082
3.52	0.99979	0.00080	0.99979	0.00080	0.99979	0.00079	0.99979	0.00079	0.99979	0.00079
3.53	0.99980	0.00077	0.99980	0.00077	0.99980	0.00077	0.99980	0.00076	0.99980	0.00076
3.54	0.99980	0.00074	0.99980	0.00074	0.99981	0.00074	0.99981	0.00074	0.99981	0.00073
3.55	0.99981	0.00072	0.99981	0.00072	0.99981	0.00071	0.99981	0.00071	0.99981	0.00071
3.56	0.99982	0.00069	0.99982	0.00069	0.99982	0.00069	0.99982	0.00069	0.99982	0.00068
3.57	0.99982	0.00067	0.99983	0.00067	0.99983	0.00066	0.99983	0.00066	0.99983	0.00066
3.58	0.99983	0.00065	0.99983	0.00064	0.99983	0.00064	0.99983	0.00064	0.99983	0.00064
3.59	0.99984	0.00062	0.99984	0.00062	0.99984	0.00062	0.99984	0.00062	0.99984	0.00061
3.60	0.99984	0.00060	0.99984	0.00060	0,99985	0.00060	0,99985	0.00059	0.99985	0.00059
3.61	0.99985	0.00058	0.99985	0.00058	0,99985	0.00058	0.99985	0.00057	0.99985	0.00057
3.62	0,99986	0.00056	0,99986	0.00056	0,99986	0.00055	0,99986	0.00055	0,99986	0.00055
3.63	0.99986	0.00054	0.99986	0.00054	0.99986	0.00054	0.99986	0.00053	0.99986	0.00053
3.64	0,99987	0.00052	0.99987	0.00052	0,99987	0.00052	0.99987	0.00051	0,99987	0.00051
3.65	0.99987	0.00050	0.99987	0.00050	0.99987	0.00050	0.99987	0.00050	0.99987	0.00049
3.66	0.99988	0.00048	0.99988	0.00048	0.99988	0.00048	0.99988	0.00048	0.99988	0.00048
3.67	0.99988	0.00047	0.99988	0.00046	0.99988	0.00046	0.99988	0.00046	0.99988	0.00046
3.68	0.99989	0.00045	0.99989	0.00045	0.99989	0.00045	0.99989	0.00044	0.99989	0.00044
3,69	0,99989	0.00043	0,99989	0.00043	0,99989	0.00043	0,99989	0.00043	0,99989	0.00043
3,70	0,99989	0.00042	0,99989	0.00042	0,99990	0.00041	0,99990	0.00041	0,99990	0.00041
3,71	0,99990	0.00040	0,99990	0.00040	0,99990	0.00040	0,99990	0.00040	0,99990	0.00040
3.72	0.99990	0.00039	0.99990	0.00039	0.99990	0.00038	0.99990	0.00038	0.99990	0.00038
3,73	0,99991	0.00037	0,99991	0.00037	0,99991	0.00037	0,99991	0.00037	0,99991	0.00037
3.74	0.99991	0.00036	0.99991	0.00036	0.99991	0.00036	0.99991	0.00036	0.99991	0.00035
3.75	0.99991	0.00035	0.99991	0.00034	0.99991	0.00034	0.99991	0.00034	0.99991	0.00034
3.76	0.99992	0.00033	0.99992	0.00033	0.99992	0.00033	0.99992	0.00033	0.99992	0.00033
3.77	0.99992	0.00032	0.99992	0.00032	0.99992	0.00032	0.99992	0.00032	0.99992	0.00032
3.78	0.99992	0.00031	0.99992	0.00031	0.99992	0.00031	0.99992	0.00031	0.99992	0.00030
3.79	0.99993	0.00030	0.99993	0.00030	0.99993	0.00030	0.99993	0.00029	0.99993	0.00029
3.80	0.99993	0.00029	0.99993	0.00029	0.99993	0.00028	0.99993	0.00028	0.99993	0.00028
3.81	0,99993	0.00028	0,99993	0.00027	0,99993	0.00027	0,99993	0.00027	0,99993	0.00027
3.82	0,99993	0.00027	0,99993	0.00026	0,99994	0.00026	0,99994	0.00026	0.99994	0.00026
3.83	0.99994	0.00026	0.99994	0.00025	0.99994	0.00025	0.99994	0.00025	0.99994	0.00025
3.84	0.99994	0.00025	0,99994	0.00024	0,99994	0.00024	0,99994	0.00024	0,99994	0,00024
3.85	0.99994	0.00024	0.99994	0.00024	0.99994	0.00023	0.99994	0.00023	0.99994	0.00023
3.86	0.99994	0.00023	0,99994	0.00023	0,99994	0.00023	0,99995	0.00022	0,99995	0,00022
3.87	0.99995	0.00022	0,99995	0.00022	0,99995	0.00022	0,99995	0.00022	0,99995	0,00022
3.88	0,99995	0,00021	0,99995	0,00021	0,99995	0,00021	0,99995	0,00021	0,99995	0,00021
3.89	0.99995	0.00020	0,99995	0,00020	0,99995	0.00020	0,99995	0.00020	0,99995	0,00020
3.90	0.99995	0.00019	0,99995	0.00019	0,99995	0.00019	0,99995	0.00019	0,99995	0,00019
3.91	0,99995	0,00019	0,99995	0,00019	0,99996	0,00019	0,99996	0,00019	0,99996	0,00018

7	,0	05	,006		,007		,008		,009	
2	Luas	Ordinat								
3,92	0,99996	0,00018	0,99996	0,00018	0,99996	0,00018	0,99996	0,00018	0,99996	0,00018
3,93	0,99996	0,00017	0,99996	0,00017	0,99996	0,00017	0,99996	0,00017	0,99996	0,00017
3,94	0,99996	0,00017	0,99996	0,00017	0,99996	0,00017	0,99996	0,00016	0,99996	0,00016
3,95	0,99996	0,00016	0,99996	0,00016	0,99996	0,00016	0,99996	0,00016	0,99996	0,00016
3,96	0,99996	0,00015	0,99996	0,00015	0,99996	0,00015	0,99996	0,00015	0,99996	0,00015
3,97	0,99996	0,00015	0,99996	0,00015	0,99997	0,00015	0,99997	0,00015	0,99997	0,00015
3,98	0,99997	0,00014	0,99997	0,00014	0,99997	0,00014	0,99997	0,00014	0,99997	0,00014
3,99	0,99997	0,00014	0,99997	0,00014	0,99997	0,00014	0,99997	0,00013	0,99997	0,00013

LAMPIRAN II: TABEL DISTRIBUSI F

alfa	460				df1					
alla	uiz	1	2	3	4	5	6	7		
0.01	1	4,052.181	4,999.500	5,403.352	5,624.583	5,763.650	5,858.986	5,928.356		
0.01	2	98.503	99.000	99.166	99.249	99.299	99.333	99.356		
0.01	3	34.116	30.817	29.457	28.710	28.237	27.911	27.672		
0.01	4	21.198	18.000	16.694	15.977	15.522	15.207	14.976		
0.01	5	16.258	13.274	12.060	11.392	10.967	10.672	10.456		
0.01	6	13.745	10.925	9.780	9.148	8.746	8.466	8.260		
0.01	7	12.246	9.547	8.451	7.847	7.460	7.191	6.993		
0.01	8	11.259	8.649	7.591	7.006	6.632	6.371	6.178		
0.01	9	10.561	8.022	6.992	6.422	6.057	5.802	5.613		
0.01	10	10.044	7.559	6.552	5.994	5.636	5.386	5.200		
0.01	11	9.646	7.206	6.217	5.668	5.316	5.069	4.886		
0.01	12	9.330	6.927	5.953	5.412	5.064	4.821	4.640		
0.01	13	9.074	6.701	5.739	5.205	4.862	4.620	4.441		
0.01	14	8.862	6.515	5.564	5.035	4.695	4.456	4.278		
0.01	15	8.683	6.359	5.417	4.893	4.556	4.318	4.142		
0.01	16	8.531	6.226	5.292	4.773	4.437	4.202	4.026		
0.01	17	8.400	6.112	5.185	4.669	4.336	4.102	3.927		
0.01	18	8.285	6.013	5.092	4.579	4.248	4.015	3.841		
0.01	19	8.185	5.926	5.010	4.500	4.171	3.939	3.765		
0.01	20	8.096	5.849	4.938	4.431	4.103	3.871	3.699		
0.01	21	8.017	5.780	4.874	4.369	4.042	3.812	3.640		
0.01	22	7.945	5.719	4.817	4.313	3.988	3.758	3.587		
0.01	23	7.881	5.664	4.765	4.264	3.939	3.710	3.539		
0.01	24	7.823	5.614	4.718	4.218	3.895	3.667	3.496		
0.01	25	7.770	5.568	4.675	4.177	3.855	3.627	3.457		
0.01	26	7.721	5.526	4.637	4.140	3.818	3.591	3.421		
0.01	27	7.677	5.488	4.601	4.106	3.785	3.558	3.388		
0.01	28	7.636	5.453	4.568	4.074	3.754	3.528	3.358		
0.01	29	7.598	5.420	4.538	4.045	3.725	3.499	3.330		
0.01	30	7.562	5.390	4.510	4.018	3.699	3.473	3.304		
0.01	40	7.314	5.179	4.313	3.828	3.514	3.291	3.124		
0.01	60	7.077	4.977	4.126	3.649	3.339	3.119	2.953		
0.01	120	6.851	4.787	3.949	3.480	3.174	2.956	2.792		
0.01	10,000	6.635	4.605	3.782	3.319	3.017	2.802	2.639		

alfa	460		df1								
aira	atz	1	2	3	4	5	6	7			
0.05	1	161.448	199.500	215.707	224.583	230.162	233.986	236.768			
0.05	2	18.513	19.000	19.164	19.247	19.296	19.329	19.353			
0.05	3	10.128	9.552	9.277	9.117	9.014	8.941	8.887			
0.05	4	7.709	6.944	6.591	6.388	6.256	6.163	6.094			
0.05	5	6.608	5.786	5.410	5.192	5.050	4.950	4.876			
0.05	6	5.987	5.143	4.757	4.534	4.387	4.284	4.207			
0.05	7	5.591	4.737	4.347	4.120	3.971	3.866	3.787			
0.05	8	5.318	4.459	4.066	3.838	3.688	3.581	3.501			
0.05	9	5.117	4.256	3.862	3.633	3.482	3.374	3.293			
0.05	10	4.965	4.103	3.708	3.478	3.326	3.217	3.135			
0.05	11	4.844	3.982	3.587	3.357	3.204	3.095	3.012			
0.05	12	4,747	3.885	3.490	3.259	3.106	2.996	2.913			
0.05	13	4.667	3.806	3.410	3.179	3.025	2.915	2.832			
0.05	14	4.600	3.739	3.344	3,112	2.958	2.848	2.764			
0.05	15	4.543	3.682	3.287	3.056	2.901	2.791	2.707			
0.05	16	4,494	3.634	3.239	3.007	2.852	2.741	2.657			
0.05	17	4.451	3.591	3,197	2.965	2.810	2.699	2.614			
0.05	18	4.414	3.555	3.160	2.928	2.773	2.661	2.577			
0.05	19	4.381	3.522	3.127	2.895	2.740	2.628	2.543			
0.05	20	4.351	3.493	3.098	2.866	2.711	2,599	2.514			
0.05	21	4.325	3.467	3.072	2.840	2.685	2.573	2.488			
0.05	22	4.301	3.443	3.049	2.817	2.661	2.549	2.464			
0.05	23	4,279	3.422	3.028	2,796	2.640	2.528	2.442			
0.05	24	4.260	3.403	3.009	2.776	2.621	2.508	2.423			
0.05	25	4.242	3.385	2.991	2,759	2.603	2.490	2.405			
0.05	26	4.225	3.369	2.975	2.743	2.587	2.474	2.388			
0.05	27	4.210	3.354	2.960	2.728	2.572	2.459	2.373			
0.05	28	4.196	3.340	2.947	2.714	2.558	2.445	2.359			
0.05	29	4.183	3.328	2.934	2.701	2.545	2.432	2.346			
0.05	30	4,171	3.316	2,922	2,690	2.534	2.421	2.334			
0.05	40	4.085	3.232	2.839	2.606	2.450	2.336	2.249			
0.05	60	4.001	3.150	2,758	2.525	2.368	2.254	2.167			
0.05	120	3.920	3.072	2.680	2.447	2.290	2.175	2.087			
0.05	10.000	3.841	2.996	2.605	2.372	2.214	2.099	2.010			
0.10	1	39.863	49,500	53.593	55.833	57.240	58.204	58,906			
0.10	2	8.526	9.000	9.162	9.243	9.293	9.326	9.349			
0.10	3	5.538	5.462	5.391	5.343	5.309	5.285	5.266			
0.10	4	4.545	4.325	4.191	4.107	4.051	4.010	3.979			
0.10	5	4.060	3.780	3.619	3.520	3.453	3.405	3.368			
0.10	6	3.776	3.463	3.289	3,181	3,108	3.055	3.014			
0.10	7	3,589	3,257	3.074	2.961	2.883	2.827	2,785			
0.10	8	3.458	3.113	2.924	2.806	2.726	2.668	2.624			
0.10	9	3.360	3.006	2.813	2.693	2.611	2.551	2.505			
0.10	10	3.285	2.924	2.728	2.605	2.522	2.461	2.414			
0.10	11	3.225	2.860	2.660	2.536	2.451	2.389	2.342			
0.10	12	3.177	2.807	2.606	2.480	2.394	2.331	2.283			
0.10	13	3,136	2.763	2.560	2.434	2.347	2.283	2.234			
0.10	14	3,102	2.726	2.522	2.395	2.307	2.243	2,193			
0.10	15	3.073	2.695	2,490	2.361	2.273	2.208	2.158			
0.10	16	3.048	2.668	2.462	2.333	2.244	2.178	2.128			
0.10		5.5.0	2.000	2.102	2.000	1		20			

alfa	452	df1									
alla	uiz	1	2	3	4	5	6	7			
0.10	17	3.026	2.645	2.437	2.308	2.218	2.152	2.102			
0.10	18	3.007	2.624	2.416	2.286	2.196	2.130	2.079			
0.10	19	2.990	2.606	2.397	2.266	2.176	2.109	2.058			
0.10	20	2.975	2.589	2.380	2.249	2.158	2.091	2.040			
0.10	21	2.961	2.575	2.365	2.233	2.142	2.075	2.023			
0.10	22	2.949	2.561	2.351	2.219	2.128	2.061	2.008			
0.10	23	2.937	2.549	2.339	2.207	2.115	2.047	1.995			
0.10	24	2.927	2.538	2.327	2.195	2.103	2.035	1.983			
0.10	25	2.918	2.528	2.317	2.184	2.092	2.024	1.971			
0.10	26	2.909	2.519	2.307	2.174	2.082	2.014	1.961			
0.10	27	2.901	2.511	2.299	2.165	2.073	2.005	1.952			
0.10	28	2.894	2.503	2.291	2.157	2.064	1.996	1.943			
0.10	29	2.887	2.495	2.283	2.149	2.057	1.988	1.935			
0.10	30	2.881	2.489	2.276	2.142	2.049	1.980	1.927			
0.10	40	2.835	2.440	2.226	2.091	1.997	1.927	1.873			
0.10	60	2.791	2.393	2.177	2.041	1.946	1.875	1.819			
0.10	120	2.748	2.347	2.130	1.992	1.896	1.824	1.767			
0.10	10,000	2.706	2.303	2.084	1.945	1.847	1.774	1.717			

lanjutan

alfa	440	df1								
alfa	arz	8	9	10	12	15	20			
0.01	1	5,981.070	6,022.473	6,055.847	6,106.321	6,157.285	6,208.730			
0.01	2	99.374	99.388	99.399	99.416	99.433	99.449			
0.01	3	27.489	27.345	27.229	27.052	26.872	26.690			
0.01	4	14.799	14.659	14.546	14.374	14.198	14.020			
0.01	5	10.289	10.158	10.051	9.888	9.722	9.553			
0.01	6	8.102	7.976	7.874	7.718	7.559	7.396			
0.01	7	6.840	6.719	6.620	6.469	6.314	6.155			
0.01	8	6.029	5.911	5.814	5.667	5.515	5.359			
0.01	9	5.467	5.351	5.257	5.111	4.962	4.808			
0.01	10	5.057	4.942	4.849	4.706	4.558	4.405			
0.01	11	4.744	4.632	4.539	4.397	4.251	4.099			
0.01	12	4.499	4.388	4.296	4.155	4.010	3.858			
0.01	13	4.302	4.191	4.100	3.960	3.815	3.665			
0.01	14	4.140	4.030	3.939	3.800	3.656	3.505			
0.01	15	4.004	3.895	3.805	3.666	3.522	3.372			
0.01	16	3.890	3.780	3.691	3.553	3.409	3.259			
0.01	17	3.791	3.682	3.593	3.455	3.312	3.162			
0.01	18	3.705	3.597	3.508	3.371	3.227	3.077			
0.01	19	3.631	3.523	3.434	3.297	3.153	3.003			
0.01	20	3.564	3.457	3.368	3.231	3.088	2.938			
0.01	21	3.506	3.398	3.310	3.173	3.030	2.880			
0.01	22	3.453	3.346	3.258	3.121	2.978	2.827			
0.01	23	3.406	3.299	3.211	3.074	2.931	2.781			
0.01	24	3.363	3.256	3.168	3.032	2.889	2.738			
0.01	25	3.324	3.217	3.129	2.993	2.850	2.699			
0.01	26	3.288	3.182	3.094	2.958	2.815	2.664			
0.01	27	3.256	3.149	3.062	2.926	2.783	2.632			

	100							
alfa	df2	8	9	10	12	15	20	
0.01	28	3.226	3.120	3.032	2.896	2.753	2.602	
0.01	29	3.198	3.092	3.005	2.868	2.726	2.574	
0.01	30	3.173	3.067	2.979	2.843	2.700	2.549	
0.01	40	2.993	2.888	2.801	2.665	2.522	2.369	
0.01	60	2.823	2.718	2.632	2.496	2.352	2.198	
0.01	120	2.663	2.559	2.472	2.336	2.192	2.035	
0.01	10,000	2.511	2.407	2.321	2.185	2.039	1.878	
0.05	1	238.883	240.543	241.882	243.906	245.950	248.013	
0.05	2	19.371	19.385	19.396	19.413	19.429	19.446	
0.05	3	8.845	8.812	8.786	8.745	8.703	8.660	
0.05	4	6.041	5.999	5.964	5.912	5.858	5.803	
0.05	5	4.818	4.772	4.735	4.678	4.619	4.558	
0.05	6	4.147	4.099	4.060	4.000	3.938	3.874	
0.05	7	3.726	3.677	3.636	3.575	3.511	3.445	
0.05	8	3.438	3.388	3.347	3.284	3.218	3.150	
0.05	9	3.230	3.179	3.137	3.073	3.006	2.937	
0.05	10	3.072	3.020	2.978	2.913	2.845	2.774	
0.05	11	2.948	2.896	2.854	2.788	2.719	2.646	
0.05	12	2.849	2.796	2.753	2.687	2.617	2.544	
0.05	13	2.767	2.714	2.671	2.604	2.533	2.459	
0.05	14	2.699	2.646	2.602	2.534	2.463	2.388	
0.05	15	2.641	2.588	2.544	2.475	2.403	2.328	
0.05	16	2.591	2.538	2.494	2.425	2.352	2.276	
0.05	17	2.548	2.494	2.450	2.381	2.308	2.230	
0.05	18	2.510	2.456	2.412	2.342	2.269	2.191	
0.05	19	2.477	2.423	2.378	2.308	2.234	2.155	
0.05	20	2.447	2.393	2.348	2.278	2.203	2.124	
0.05	21	2.421	2.366	2.321	2.250	2.176	2.096	
0.05	22	2.397	2.342	2.297	2.226	2.151	2.071	
0.05	23	2.375	2.320	2.275	2.204	2.128	2.048	
0.05	24	2.355	2.300	2.255	2.183	2.108	2.027	
0.05	25	2.337	2.282	2.236	2.165	2.089	2.007	
0.05	26	2.320	2.265	2.220	2.148	2.072	1.990	
0.05	27	2.305	2.250	2.204	2.132	2.056	1.974	
0.05	28	2.291	2.236	2.190	2.118	2.041	1.959	
0.05	29	2.278	2.223	2.177	2.104	2.027	1.945	
0.05	30	2.266	2.211	2.165	2.092	2.015	1.932	
0.05	40	2.180	2.124	2.077	2.003	1.925	1.839	
0.05	60	2.097	2.040	1.993	1.917	1.836	1.748	
0.05	120	2.016	1.959	1.911	1.834	1.750	1.659	
0.05	10,000	1.938	1.880	1.831	1.752	1.666	1.570	
0.10	1	59.439	59.858	60.195	60.705	61.220	61.740	
0.10	2	9.367	9.381	9.392	9.408	9.425	9.441	
0.10	3	5.252	5.240	5.230	5.216	5.200	5.184	
0.10	4	3.955	3.936	3.920	3.896	3.870	3.844	
0.10	5	3.339	3.316	3.297	3.268	3.238	3.207	
0.10	6	2.983	2.958	2.937	2.905	2.8/1	2.836	
0.10	7	2.752	2.725	2.703	2.668	2.632	2.595	
0.10	8	2.589	2.561	2.538	2.502	2.464	2.425	
0.10	9	2.469	2.440	2.416	2.379	2.340	2.298	

alfa	45			d	f1		
ana	uiz	8	9	10	12	15	20
0.10	10	2.377	2.347	2.323	2.284	2.244	2.201
0.10	11	2.304	2.273	2.248	2.209	2.167	2.123
0.10	12	2.245	2.214	2.188	2.147	2.105	2.060
0.10	13	2.195	2.164	2.138	2.097	2.053	2.007
0.10	14	2.154	2.122	2.095	2.054	2.010	1.962
0.10	15	2.119	2.086	2.059	2.017	1.972	1.924
0.10	16	2.088	2.055	2.028	1.985	1.940	1.891
0.10	17	2.061	2.028	2.001	1.958	1.912	1.862
0.10	18	2.038	2.005	1.977	1.933	1.887	1.837
0.10	19	2.017	1.984	1.956	1.912	1.865	1.814
0.10	20	1.999	1.965	1.937	1.892	1.845	1.794
0.10	21	1.982	1.948	1.920	1.875	1.827	1.776
0.10	22	1.967	1.933	1.904	1.859	1.811	1.759
0.10	23	1.953	1.919	1.890	1.845	1.796	1.744
0.10	24	1.941	1.906	1.877	1.832	1.783	1.730
0.10	25	1.929	1.895	1.866	1.820	1.771	1.718
0.10	26	1.919	1.884	1.855	1.809	1.760	1.706
0.10	27	1.909	1.874	1.845	1.799	1.749	1.695
0.10	28	1.900	1.865	1.836	1.790	1.740	1.685
0.10	29	1.892	1.857	1.827	1.781	1.731	1.676
0.10	30	1.884	1.849	1.819	1.773	1.722	1.667
0.10	40	1.829	1.793	1.763	1.715	1.662	1.605
0.10	60	1.775	1.738	1.707	1.657	1.603	1.543
0.10	120	1.722	1.684	1.652	1.601	1.545	1.482
0.10	10,000	1.670	1.632	1.599	1.546	1.487	1.421

lanjutan

alfa	460			di	1		
ana	uiz	24	30	40	60	120	10,000
0.01	1	6,234.631	6,260.649	6,286.782	6,313.030	6,339.391	6,365.864
0.01	2	99.458	99.466	99.474	99.482	99.491	99.499
0.01	3	26.598	26.505	26.411	26.316	26.221	26.125
0.01	4	13.929	13.838	13.745	13.652	13.558	13.463
0.01	5	9.466	9.379	9.291	9.202	9.112	9.020
0.01	6	7.313	7.229	7.143	7.057	6.969	6.880
0.01	7	6.074	5.992	5.908	5.824	5.737	5.650
0.01	8	5.279	5.198	5.116	5.032	4.946	4.859
0.01	9	4.729	4.649	4.567	4.483	4.398	4.311
0.01	10	4.327	4.247	4.165	4.082	3.996	3.909
0.01	11	4.021	3.941	3.860	3.776	3.690	3.602
0.01	12	3.780	3.701	3.619	3.535	3.449	3.361
0.01	13	3.587	3.507	3.425	3.341	3.255	3.165
0.01	14	3.427	3.348	3.266	3.181	3.094	3.004
0.01	15	3.294	3.214	3.132	3.047	2.959	2.868
0.01	16	3.181	3.101	3.018	2.933	2.845	2.753
0.01	17	3.084	3.003	2.920	2.835	2.746	2.653
0.01	18	2.999	2.919	2.835	2.749	2.660	2.566
0.01	19	2.925	2.844	2.761	2.674	2.584	2.489
0.01	20	2.859	2.778	2.695	2.608	2.517	2.421

	100	df1							
alta	df2	24	30	40	60	120	10,000		
0.01	21	2.801	2.720	2.636	2.548	2.457	2.360		
0.01	22	2.749	2.667	2.583	2.495	2.403	2.305		
0.01	23	2.702	2.620	2.535	2.447	2.354	2.256		
0.01	24	2.659	2.577	2.492	2.403	2.310	2.211		
0.01	25	2.620	2.538	2.453	2.364	2.270	2.169		
0.01	26	2.585	2.503	2.417	2.327	2.233	2.131		
0.01	27	2.552	2.470	2.384	2.294	2.198	2.097		
0.01	28	2.522	2.440	2.354	2.263	2.167	2.064		
0.01	29	2.495	2.412	2.325	2.234	2.138	2.034		
0.01	30	2.469	2.386	2.299	2.208	2.111	2.006		
0.01	40	2.288	2.203	2.114	2.019	1.917	1.805		
0.01	60	2.115	2.028	1.936	1.836	1.726	1.601		
0.01	120	1.950	1.860	1.763	1.656	1.533	1.381		
0.01	10,000	1.791	1.696	1.592	1.473	1.325	1.000		
0.05	1	249.052	250.095	251.143	252.196	253.253	254.314		
0.05	2	19.454	19.462	19.471	19.479	19.487	19.496		
0.05	3	8.639	8.617	8.594	8.572	8.549	8.526		
0.05	4	5.774	5.746	5.717	5.688	5.658	5.628		
0.05	5	4.527	4.496	4.464	4.431	4.399	4.365		
0.05	6	3.841	3.808	3.774	3.740	3.705	3.669		
0.05	7	3.410	3.376	3.340	3.304	3.267	3.230		
0.05	8	3.115	3.079	3.043	3.005	2.967	2.928		
0.05	9	2.901	2.864	2.826	2.787	2.748	2.707		
0.05	10	2.737	2.700	2.661	2.621	2.580	2.538		
0.05	11	2.609	2.570	2.531	2.490	2.448	2.405		
0.05	12	2.506	2.466	2.426	2.384	2.341	2.296		
0.05	13	2.420	2.380	2.339	2.297	2.252	2.206		
0.05	14	2.349	2.308	2.266	2.223	2.178	2.131		
0.05	15	2.288	2.247	2.204	2.160	2.114	2.066		
0.05	16	2.235	2.194	2.151	2.106	2.059	2.010		
0.05	17	2.190	2.148	2.104	2.058	2.011	1.960		
0.05	18	2.150	2.107	2.063	2.017	1.968	1.917		
0.05	19	2.114	2.071	2.026	1.980	1.930	1.878		
0.05	20	2.083	2.039	1.994	1.946	1.896	1.843		
0.05	21	2.054	2.010	1.964	1.917	1.866	1.812		
0.05	22	2.028	1.984	1.938	1.889	1.838	1.783		
0.05	23	2.005	1.960	1.914	1.865	1.813	1.757		
0.05	24	1.984	1.939	1.892	1.842	1.790	1./33		
0.05	25	1.964	1.919	1.8/2	1.822	1.768	1./11		
0.05	26	1.946	1.901	1.853	1.803	1./49	1.691		
0.05	27	1.930	1.884	1.836	1.785	1./31	1.6/2		
0.05	28	1.915	1.869	1.820	1.769	1./14	1.654		
0.05	29	1.901	1.854	1.806	1./54	1.698	1.638		
0.05	30	1.88/	1.841	1.792	1./40	1.684	1.622		
0.05	40	1.793	1./44	1.693	1.63/	1.5//	1.509		
0.05	60	1.700	1.649	1.594	1.534	1.467	1.389		
0.05	120	1.608	1.554	1.495	1.429	1.352	1.254		
0.05	10,000	1.51/	1.459	1.394	1.318	1.221	1.000		
0.10	1	62.002	62.265	62.529	62.794	63.061	63.328		
0.10	2	9.450	9.458	9.466	9.475	9.483	9.491		
BELAJAR STATISTIKA DENGAN UNPAD SAS

alfa	460	df1							
ana	uiz	24	30	40	60	120	10,000		
0.10	3	5.176	5.168	5.160	5.151	5.143	5.134		
0.10	4	3.831	3.817	3.804	3.790	3.775	3.761		
0.10	5	3.191	3.174	3.157	3.140	3.123	3.105		
0.10	6	2.818	2.800	2.781	2.762	2.742	2.722		
0.10	7	2.575	2.555	2.535	2.514	2.493	2.471		
0.10	8	2.404	2.383	2.361	2.339	2.316	2.293		
0.10	9	2.277	2.255	2.232	2.208	2.184	2.159		
0.10	10	2.178	2.155	2.132	2.107	2.082	2.055		
0.10	11	2.100	2.076	2.052	2.026	2.000	1.972		
0.10	12	2.036	2.011	1.986	1.960	1.932	1.904		
0.10	13	1.983	1.958	1.931	1.904	1.876	1.846		
0.10	14	1.938	1.912	1.885	1.857	1.828	1.797		
0.10	15	1.899	1.873	1.845	1.817	1.787	1.755		
0.10	16	1.866	1.839	1.811	1.782	1.751	1.718		
0.10	17	1.836	1.809	1.781	1.751	1.719	1.686		
0.10	18	1.810	1.783	1.754	1.723	1.691	1.657		
0.10	19	1.787	1.759	1.730	1.699	1.666	1.631		
0.10	20	1.767	1.738	1.708	1.677	1.643	1.607		
0.10	21	1.748	1.719	1.689	1.657	1.623	1.586		
0.10	22	1.731	1.702	1.671	1.639	1.604	1.567		
0.10	23	1.716	1.686	1.655	1.622	1.587	1.549		
0.10	24	1.702	1.672	1.641	1.607	1.571	1.533		
0.10	25	1.689	1.659	1.627	1.593	1.557	1.518		
0.10	26	1.677	1.647	1.615	1.580	1.544	1.504		
0.10	27	1.666	1.636	1.603	1.569	1.531	1.491		
0.10	28	1.656	1.625	1.592	1.558	1.520	1.478		
0.10	29	1.647	1.616	1.583	1.547	1.509	1.467		
0.10	30	1.638	1.606	1.573	1.538	1.499	1.456		
0.10	40	1.574	1.541	1.506	1.467	1.425	1.377		
0.10	60	1.511	1.476	1.437	1.395	1.348	1.291		
0.10	120	1.447	1.409	1.368	1.320	1.265	1.193		
0.10	10,000	1.383	1.342	1.295	1.240	1.169	1.000		

LAMPIRAN

df	d10	d05	d02	d01	df	d10	d05	d02	d01
1	0.988	0.997	1.000	1.000	21	0.352	0.413	0.482	0.526
2	0.900	0.950	0.980	0.990	22	0.344	0.404	0.472	0.515
3	0.805	0.878	0.934	0.959	23	0.337	0.396	0.462	0.505
4	0.729	0.811	0.882	0.917	24	0.330	0.388	0.453	0.496
5	0.669	0.754	0.833	0.874	25	0.323	0.381	0.445	0.487
6	0.622	0.707	0.789	0.834	26	0.317	0.374	0.437	0.479
7	0.582	0.666	0.750	0.798	27	0.311	0.367	0.430	0.471
8	0.549	0.632	0.716	0.765	28	0.306	0.361	0.423	0.463
9	0.521	0.602	0.685	0.735	29	0.301	0.355	0.416	0.456
10	0.497	0.576	0.658	0.708	30	0.296	0.349	0.409	0.449
11	0.476	0.553	0.634	0.684	35	0.275	0.325	0.381	0.418
12	0.458	0.532	0.612	0.661	40	0.257	0.304	0.358	0.393
13	0.441	0.514	0.592	0.641	45	0.243	0.288	0.338	0.372
14	0.426	0.497	0.574	0.623	50	0.231	0.273	0.322	0.354
15	0.412	0.482	0.558	0.606	60	0.211	0.250	0.295	0.325
16	0.400	0.468	0.542	0.590	70	0.195	0.232	0.274	0.303
17	0.389	0.456	0.528	0.575	80	0.183	0.217	0.256	0.283
18	0.378	0.444	0.516	0.561	90	0.173	0.205	0.242	0.267
19	0.369	0.433	0.503	0.549	100	0.164	0.195	0.230	0.254
20	0.360	0.423	0.492	0.537					

LAMPIRAN III: DISTRIBUSI R

LAMPIRAN IV: DISTRIBUSI CHI-SQUARE

٩t	α							
u	0.10	0.05	0.025	0.001				
1	2,70554	3,84146	5,02389	6,6349				
2	4,60517	5,99146	7,37776	9,21034				
3	6,25139	7,81473	9,34840	11,34487				
4	7,77944	9,48773	11,14329	13,2767				
5	9,23636	11,0705	12,83250	15,08627				
6	10,64464	12,59159	14,44938	16,81189				
7	12,01704	14,06714	16,01276	18,47531				
8	13,36157	15,50731	17,53455	20,09024				
9	14,68366	16,91898	19,02277	21,66599				
10	15,98718	18,30704	20,48318	23,20925				
11	17,27501	19,67514	21,92005	24,72497				
12	18,54935	21,02607	23,33666	26,21697				
13	19,81193	22,36203	24,73560	27,68825				
14	21,06414	23,68479	26,11895	29,14124				
15	22,30713	24,99579	27,48839	30,57791				
16	23,54183	26,29623	28,84535	31,99993				
17	24,76904	27,58711	30,19101	33,40866				
18	25,98942	28,86930	31,52638	34,80531				
19	27,20357	30,14353	32,85233	36,19087				
20	28,41198	31,41043	34,16961	37,56623				
21	29,61509	32,67057	35,47888	38,93217				

BELAJAR STATISTIKA DENGAN UNPAD SAS

	α							
dt	0.10	0.05	0.025	0.001				
22	30,81328	33,92444	36,78071	40,28936				
23	32,00690	35,17246	38,07563	41,63840				
24	33,19624	36,41503	39,36408	42,97982				
25	34,38159	37.65248	40.64647	44.31410				
26	35,56317	38.88514	41.92317	45.64168				
27	36,74122	40.11327	43,19451	46.96294				
28	37.91592	41.33714	44.46079	48.27824				
29	39.08747	42.55697	45.72229	49.58788				
30	40.25602	43,77297	46.97924	50.89218				
31	41.42174	44.98534	48.23189	52,19139				
32	42,58475	46,19426	49,48044	53,48577				
33	43,74518	47.39988	50.72508	54.77554				
34	44,90316	48.60237	51,96600	56.06091				
35	46.05879	49,80185	53,20335	57.34207				
36	47.21217	50,99846	54.43729	58.61921				
37	48,36341	52,19232	55.66797	59.89250				
38	49.51258	53,38354	56.89552	61,16209				
39	50.65977	54.57223	58,12006	62.42812				
40	51.80506	55,75848	59.34171	63.69074				
41	52,94851	56,94239	60.56057	64.95007				
42	54,09020	58,12404	61,77676	66,20624				
43	55,23019	59,30351	62,99036	67,45935				
44	56,36854	60,48089	64,20146	68,70951				
45	57.50530	61.65623	65.41016	69.95683				
46	58.64054	62.82962	66.61653	71.20140				
47	59,77429	64.00111	67.82065	72,44331				
48	60,90661	65.17077	69.02259	73.68264				
49	62.03754	66.33865	70.22241	74.91947				
50	63.16712	67.50481	71.42020	76.15389				
51	64.29540	68.66929	72.61599	77.38596				
52	65.42241	69.83216	73.80986	78.61576				
53	66,54820	70,99345	75,00186	79,84334				
54	67,67279	72,15322	76,19205	81,06877				
55	68,79621	73,31149	77,38047	82,29212				
56	69,91851	74,46832	78,56716	83,51343				
57	71,03971	75,62375	79,75219	84,73277				
58	72,15984	76,77780	80,93559	85,95018				
59	73,27893	77,93052	82,11741	87,16571				
60	74,39701	79,08194	83,29768	88,37942				
61	75,51409	80,23210	84,47644	89,59134				
62	76,63021	81,38102	85,65373	90,80153				
63	77,74538	82,52873	86,82959	92,01002				
64	78,85964	83,67526	88,00405	93,21686				
65	79,97300	84,82065	89,17715	94,42208				
66	81,08549	85,96491	90,34890	95,62572				
67	82,19711	87,10807	91,51936	96,82782				
68	83,30790	88,25016	92,68854	98,02840				
69	84,41787	89,39121	93,85647	99,22752				
70	85,52704	90,53123	95,02318	100,42518				
71	86,63543	91,67024	96,18870	101,62144				

LAMPIRAN

46	α							
ar	0.10	0.05	0.025	0.001				
72	87,74305	92,80827	97,35305	102,81631				
73	88,84992	93,94534	98,51626	104,00983				
74	89,95605	95,08147	99,67835	105,20203				
75	91,06146	96,21667	100,83934	106,39292				
76	92,16617	97,35097	101,99925	107,58254				
77	93,27018	98,48438	103,15811	108,77092				
78	94,37352	99,61693	104,31594	109,95807				
79	95,47619	100,74862	105,47275	111,14402				
80	96,57820	101,87947	106,62857	112,32879				
81	97,67958	103,00951	107,78341	113,51241				
82	98,78033	104,13874	108,93729	114,69489				
83	99,88046	105,26718	110,09024	115,87627				
84	100,97999	106,39484	111,24226	117,05654				
85	102,07892	107,52174	112,39337	118,23575				
86	103,17726	108,64789	113,54360	119,41390				
87	104,27504	109,77331	114,69295	120,59101				
88	105,37225	110,89800	115,84144	121,76711				
89	106,46890	112,02199	116,98908	122,94221				
90	107,56501	113,14527	118,13589	124,11632				
91	108,66058	114,26787	119,28189	125,28946				
92	109,75563	115,38979	120,42708	126,46166				
93	110,85015	116,51105	121,57148	127,63291				
94	111,94417	117,63165	122,71511	128,80325				
95	113,03769	118,75161	123,85797	129,97268				
96	114,13071	119,87094	125,00007	131,14122				
97	115,22324	120,98964	126,14144	132,30888				
98	116,31530	122,10773	127,28207	133,47567				
99	117,40688	123,22522	128,42199	134,64162				
100	118,4980	124,34211	129,56120	135,80672				

RIWAYAT HIDUP PENULIS

Ratna Jatnika, lahir di Bandung 2 Desember 1963. Menyelesaikan pendidikan S1 di Jurusan Statistika FMIPA Unpad dan S2 serta S3 di Teknik dan Manajemen Industri ITB.

Sejak tahun 1988 bekerja sebagai dosen tetap di Fakultas Psikologi Universitas Padjadjaran untuk mata kuliah Sta-

tistika, Psikometri, Konstruksi Tes, Psikologi Eksperimen dan Pemodelan Sistem.

Penulis tertarik untuk mengembangkan metode pembelajaran Statistika agar menjadi suatu pembelajaran yang mudah dan diminati mahasiswa dengan mengajarkan dan mengembangkan software Statistik Unpad SAS sejak tahun 2014. Berbagai karya tulis penulis antara lain adalah:

- 1. The Psychometric Properties of Survey of Attitudes toward Statistics (SATS)
- 2. The Effect of Practicum Method to Students Attitudes Toward Statistics
- 3. The Effect of SPSS Course to Student Attitudes toward Statistics and Achievement in Statistics
- 4. Models of Factors Affecting the Student Mastery of Statistics in Psychology Faculty Universitas Padjadjaran
- 5. Universitas Padjadjaran Statistical Analysis Series: Theta, Eta, and Jaspen Correlation
- 6. Universitas Padjadjaran Statistical Analysis Series: Database Management and Descriptives Statistics
- 7. Developing the UNPAD SAS (Universitas Padjajaran Statistical Analysis Series) Software

RIWAYAT HIDUP PENULIS

Mustofa Haffas, lahir di Tasikmalaya 17 Desember 1960. Menyelesaikan pendidikan S1 di Fakultas Hukum Universitas Padjadjaran Bandung dan S2 di STMIK LIKMI Bandung.

Sejak tahun 1992 bekerja sebagai dosen tetap di Fakultas Hukum Universitas Padjadjaran untuk mata kuliah Pengantar Hukum Indonesia, Antropologi Budaya, Sosiologi

Hukum, dan Cyber Law.

Mengenal dunia pemrograman komputer sejak tahun 1980 ketika menempuh pendidikan di Jurusan Statistika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Padjadjaran Bandung, dan sejumlah pendidikan informal di bidang komputer.

Meraih prestasi sebagai Juara II pada Lomba Kreatifitas Program Komputer Tingkat Nasional 1989 dan Juara I pada Kompetisi Piranti Lunak Komputer Tingkat Nasional 1995.

Beberapa karya ilmiah yang telah dibuat penulis adalah:

- 1. Jurisprudence: Sistem Manajemen Pengetahuan Hukum "Terdistribusi-Terpusat"
- 2. Indonesian Dynamic Domain Name System
- 3. Virtual Classroom
- 4. Universitas Padjadjaran Statistical Analysis Series: Database Management and Descriptives Statistics
- 5. Universitas Padjadjaran Statistical Analysis Series: Theta, Eta, and Jaspen Correlation
- 6. Developing the UNPAD SAS (Universitas Padjajaran Statistical Analysis Series) Software

RIWAYAT HIDUP PENULIS

Hendriati Agustiani dilahirkan di Bandung 4 Agustus 1959. Penulis menempuh pendidikan S1, S2, dan S3 Psikologi di Fakultas Psikologi Unpad, dan mulai jadi pengajar tetap di Fakultas Psikologi Unpad sejak tahun 1986 untuk mata kuliah: Metode Penelitian, Metode Psikologi Perkembangan, Psikologi Perkembangan, Dasar-dasar Asesmen,

Observasi dan Interview, Kasuistika Umum dan Teknik dan Prosedur Memfasilitasi. Beberapa karya tulisnya antara lain:

- 1. Adolescence's Perception about Their family in Bandung Indonesia
- 2. Adolescence's Perceptioh About Parental Assistence During Puberty in Bandung
- 3. The Influence of Value Systems and Sexual Self-regulation Towards Adolescents Sexuality
- 4. Self-efficacy and Self-Regulated Learning as Predictors of Students Academic Performance
- 5. The concept of human nature in East Asia: Etic and Emic Characteristic .
- 6. Psikologi Perkembangan Pendekatan Ekologi kaitannya dengan konsep diri dan penyesuaian diri pada remaja
- 7. Developing the UNPAD SAS (Universitas Padjajaran Statistical Analysis Series) Software